Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny, magnetic spheres may help overcome gene therapy hurdle

19.09.2002


The average person’s heart pumps about a gallon of blood per minute, a rate that can easily triple or quadruple during exercise.



The rapid flow of blood through the body is a major roadblock to the use of gene therapy to cure diseases. When injected into the blood, vector viruses – which carry corrective genes – tend to shoot past the target organ or tissue rather than sticking to it, like grains of sand moving past stones in a fast-flowing river.

Now, University of Florida gene therapy and biomedical engineering researchers have demonstrated a novel approach to the problem. In a July article in Molecular Therapy, they report attaching the adeno-associated virus, a widely used gene carrier, to the surface of tiny manufactured balls known as microspheres, each containing a miniscule particle of iron oxide. Using a magnet placed under culture dishes, the researchers were able to coax large amounts of the microspheres to target areas of the cultures. In related experiments in mice, the researchers showed the microspheres clung to cells or organs longer than the virus alone did.


The procedure, reminiscent of the toy that moves magnetized objects beneath transparent plastic, could someday evolve into a treatment that would enable doctors to guide corrective gene-containing microspheres injected into a patient with magnets placed outside the skin. Such procedures, could, for example, replace invasive catheterizations used to treat lung and heart diseases, the researchers said.

"By packaging the virus with the microsphere, we both guided it to the targeted area and got it to stick there," said Barry Byrne, the lead researcher and a pediatric cardiologist with the UF College of Medicine who is affiliated with the UF Genetics Institute.

Byrne and Cathryn Mah, an assistant research professor in the department of pediatrics, collaborated on the project with UF colleagues in pharmaceutics, genetics, and materials science and engineering. The effort, partially funded by the Whitaker Foundation, is part of UF’s growing biomedical engineering initiative involving a wide range of medical and engineering researchers.

Byrne said the adeno-associated virus, a virus that is an ideal gene carrier because it is not associated with any disease, is expensive and time consuming to manufacture in quantity. As a result, if it is ever to be widely used in treating disease, clinicians must have the ability to bind it specifically to the organ, tissue or cells they hope to treat, instead of having it dispersed through the body thus diminishing its effect.

"There is no way you could provide a systemic therapy spread throughout the body if you were only after the kidney, for example," said Byrne, of UF’s Powell Gene Therapy Center. "That even applies to dosing a mouse. Gene therapies are actually unachievable without some type of targeting."

It also is important to avoid unintentional release of therapeutic genes into reproductive cells in part so that engineered genes are not passed on to children, effectively altering the human genome, Byrne said. Proof that therapeutic genes do not spread beyond their targets – such dispersion could cause tumors in non-targeted cells – is one of the Food and Drug Administration’s main criteria for approving gene therapies, he said.

Mah said the UF team’s experiments were conducted over a period of about two years, much of that time devoted to the experiments in mice. In one experiment, the team injected the virus-coated microspheres into the tail veins of three mice and the free virus into the tail veins of three others. They monitored what happened by tracking "marker" proteins produced by the virus. The procedure was similar with cell cultures containing either the free virus or the virus-coated microspheres, with the researchers tracking the marker proteins through a technique called fluorescence microscopy, in which the proteins appear fluorescent green.

The results were impressive. The mice tail vein experiments revealed 10 times the expression of the marker protein in the target organ – the lung – than in other organs, indicating the microspheres both could be targeted and made to reside longer in their target than the free virus. In the cell cultures, meanwhile, the researchers achieved more than 100 times the expression of the marker protein in the magnetized areas of the culture versus the others.

"If you think about it in terms of making doses, it might take about six months to make a single-patient dose of this vector currently," Byrne said. "If this works, I’d say we could do it in four to six weeks or even less."

The microspheres used in the experiment were polystyrene, a type of plastic. In order for the spheres to be used in actual treatment, they would have to be made of biodegradable materials, said Chris Batich, a UF professor of materials science and engineering and biomedical engineering and member of the team. Although he said he has created such biodegradable microspheres since the project was first launched, they have yet to be tested. Among other challenges, researchers will have to prove the microspheres are harmless, efficient and predictable before they can be considered for use in clinical treatment, he said.

"You have to make sure they have the right properties," he said. "They have to have enough iron oxide to be pulled by the magnetic field, and you have to make sure they have the right rate of degradation, whether its two hours or two weeks."


Writer: Aaron Hoover, ahoover@ufl.edu
Sources: Barry Byrne, (352) 846-1531, bbyrne@ufl.edu
Chris Batich, (352) 392-6630,cbati@ufl.edu

Barry Byrne | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>