Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny, magnetic spheres may help overcome gene therapy hurdle

19.09.2002


The average person’s heart pumps about a gallon of blood per minute, a rate that can easily triple or quadruple during exercise.



The rapid flow of blood through the body is a major roadblock to the use of gene therapy to cure diseases. When injected into the blood, vector viruses – which carry corrective genes – tend to shoot past the target organ or tissue rather than sticking to it, like grains of sand moving past stones in a fast-flowing river.

Now, University of Florida gene therapy and biomedical engineering researchers have demonstrated a novel approach to the problem. In a July article in Molecular Therapy, they report attaching the adeno-associated virus, a widely used gene carrier, to the surface of tiny manufactured balls known as microspheres, each containing a miniscule particle of iron oxide. Using a magnet placed under culture dishes, the researchers were able to coax large amounts of the microspheres to target areas of the cultures. In related experiments in mice, the researchers showed the microspheres clung to cells or organs longer than the virus alone did.


The procedure, reminiscent of the toy that moves magnetized objects beneath transparent plastic, could someday evolve into a treatment that would enable doctors to guide corrective gene-containing microspheres injected into a patient with magnets placed outside the skin. Such procedures, could, for example, replace invasive catheterizations used to treat lung and heart diseases, the researchers said.

"By packaging the virus with the microsphere, we both guided it to the targeted area and got it to stick there," said Barry Byrne, the lead researcher and a pediatric cardiologist with the UF College of Medicine who is affiliated with the UF Genetics Institute.

Byrne and Cathryn Mah, an assistant research professor in the department of pediatrics, collaborated on the project with UF colleagues in pharmaceutics, genetics, and materials science and engineering. The effort, partially funded by the Whitaker Foundation, is part of UF’s growing biomedical engineering initiative involving a wide range of medical and engineering researchers.

Byrne said the adeno-associated virus, a virus that is an ideal gene carrier because it is not associated with any disease, is expensive and time consuming to manufacture in quantity. As a result, if it is ever to be widely used in treating disease, clinicians must have the ability to bind it specifically to the organ, tissue or cells they hope to treat, instead of having it dispersed through the body thus diminishing its effect.

"There is no way you could provide a systemic therapy spread throughout the body if you were only after the kidney, for example," said Byrne, of UF’s Powell Gene Therapy Center. "That even applies to dosing a mouse. Gene therapies are actually unachievable without some type of targeting."

It also is important to avoid unintentional release of therapeutic genes into reproductive cells in part so that engineered genes are not passed on to children, effectively altering the human genome, Byrne said. Proof that therapeutic genes do not spread beyond their targets – such dispersion could cause tumors in non-targeted cells – is one of the Food and Drug Administration’s main criteria for approving gene therapies, he said.

Mah said the UF team’s experiments were conducted over a period of about two years, much of that time devoted to the experiments in mice. In one experiment, the team injected the virus-coated microspheres into the tail veins of three mice and the free virus into the tail veins of three others. They monitored what happened by tracking "marker" proteins produced by the virus. The procedure was similar with cell cultures containing either the free virus or the virus-coated microspheres, with the researchers tracking the marker proteins through a technique called fluorescence microscopy, in which the proteins appear fluorescent green.

The results were impressive. The mice tail vein experiments revealed 10 times the expression of the marker protein in the target organ – the lung – than in other organs, indicating the microspheres both could be targeted and made to reside longer in their target than the free virus. In the cell cultures, meanwhile, the researchers achieved more than 100 times the expression of the marker protein in the magnetized areas of the culture versus the others.

"If you think about it in terms of making doses, it might take about six months to make a single-patient dose of this vector currently," Byrne said. "If this works, I’d say we could do it in four to six weeks or even less."

The microspheres used in the experiment were polystyrene, a type of plastic. In order for the spheres to be used in actual treatment, they would have to be made of biodegradable materials, said Chris Batich, a UF professor of materials science and engineering and biomedical engineering and member of the team. Although he said he has created such biodegradable microspheres since the project was first launched, they have yet to be tested. Among other challenges, researchers will have to prove the microspheres are harmless, efficient and predictable before they can be considered for use in clinical treatment, he said.

"You have to make sure they have the right properties," he said. "They have to have enough iron oxide to be pulled by the magnetic field, and you have to make sure they have the right rate of degradation, whether its two hours or two weeks."


Writer: Aaron Hoover, ahoover@ufl.edu
Sources: Barry Byrne, (352) 846-1531, bbyrne@ufl.edu
Chris Batich, (352) 392-6630,cbati@ufl.edu

Barry Byrne | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>