Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny, magnetic spheres may help overcome gene therapy hurdle

19.09.2002


The average person’s heart pumps about a gallon of blood per minute, a rate that can easily triple or quadruple during exercise.



The rapid flow of blood through the body is a major roadblock to the use of gene therapy to cure diseases. When injected into the blood, vector viruses – which carry corrective genes – tend to shoot past the target organ or tissue rather than sticking to it, like grains of sand moving past stones in a fast-flowing river.

Now, University of Florida gene therapy and biomedical engineering researchers have demonstrated a novel approach to the problem. In a July article in Molecular Therapy, they report attaching the adeno-associated virus, a widely used gene carrier, to the surface of tiny manufactured balls known as microspheres, each containing a miniscule particle of iron oxide. Using a magnet placed under culture dishes, the researchers were able to coax large amounts of the microspheres to target areas of the cultures. In related experiments in mice, the researchers showed the microspheres clung to cells or organs longer than the virus alone did.


The procedure, reminiscent of the toy that moves magnetized objects beneath transparent plastic, could someday evolve into a treatment that would enable doctors to guide corrective gene-containing microspheres injected into a patient with magnets placed outside the skin. Such procedures, could, for example, replace invasive catheterizations used to treat lung and heart diseases, the researchers said.

"By packaging the virus with the microsphere, we both guided it to the targeted area and got it to stick there," said Barry Byrne, the lead researcher and a pediatric cardiologist with the UF College of Medicine who is affiliated with the UF Genetics Institute.

Byrne and Cathryn Mah, an assistant research professor in the department of pediatrics, collaborated on the project with UF colleagues in pharmaceutics, genetics, and materials science and engineering. The effort, partially funded by the Whitaker Foundation, is part of UF’s growing biomedical engineering initiative involving a wide range of medical and engineering researchers.

Byrne said the adeno-associated virus, a virus that is an ideal gene carrier because it is not associated with any disease, is expensive and time consuming to manufacture in quantity. As a result, if it is ever to be widely used in treating disease, clinicians must have the ability to bind it specifically to the organ, tissue or cells they hope to treat, instead of having it dispersed through the body thus diminishing its effect.

"There is no way you could provide a systemic therapy spread throughout the body if you were only after the kidney, for example," said Byrne, of UF’s Powell Gene Therapy Center. "That even applies to dosing a mouse. Gene therapies are actually unachievable without some type of targeting."

It also is important to avoid unintentional release of therapeutic genes into reproductive cells in part so that engineered genes are not passed on to children, effectively altering the human genome, Byrne said. Proof that therapeutic genes do not spread beyond their targets – such dispersion could cause tumors in non-targeted cells – is one of the Food and Drug Administration’s main criteria for approving gene therapies, he said.

Mah said the UF team’s experiments were conducted over a period of about two years, much of that time devoted to the experiments in mice. In one experiment, the team injected the virus-coated microspheres into the tail veins of three mice and the free virus into the tail veins of three others. They monitored what happened by tracking "marker" proteins produced by the virus. The procedure was similar with cell cultures containing either the free virus or the virus-coated microspheres, with the researchers tracking the marker proteins through a technique called fluorescence microscopy, in which the proteins appear fluorescent green.

The results were impressive. The mice tail vein experiments revealed 10 times the expression of the marker protein in the target organ – the lung – than in other organs, indicating the microspheres both could be targeted and made to reside longer in their target than the free virus. In the cell cultures, meanwhile, the researchers achieved more than 100 times the expression of the marker protein in the magnetized areas of the culture versus the others.

"If you think about it in terms of making doses, it might take about six months to make a single-patient dose of this vector currently," Byrne said. "If this works, I’d say we could do it in four to six weeks or even less."

The microspheres used in the experiment were polystyrene, a type of plastic. In order for the spheres to be used in actual treatment, they would have to be made of biodegradable materials, said Chris Batich, a UF professor of materials science and engineering and biomedical engineering and member of the team. Although he said he has created such biodegradable microspheres since the project was first launched, they have yet to be tested. Among other challenges, researchers will have to prove the microspheres are harmless, efficient and predictable before they can be considered for use in clinical treatment, he said.

"You have to make sure they have the right properties," he said. "They have to have enough iron oxide to be pulled by the magnetic field, and you have to make sure they have the right rate of degradation, whether its two hours or two weeks."


Writer: Aaron Hoover, ahoover@ufl.edu
Sources: Barry Byrne, (352) 846-1531, bbyrne@ufl.edu
Chris Batich, (352) 392-6630,cbati@ufl.edu

Barry Byrne | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>