Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Developments in Angiogenic Therapy Emerging from Oxford

26.08.2002


Angiogenesis, the growth of new blood vessels, is important in the healthy body for healing wounds and, in females, for the monthly reproductive cycle and during pregnancy. It is controlled in the body through the use of the body’s own angiogenesis inhibitors and stimulators. In certain diseases the body is unable to control blood vessel growth. In diseases such as cancer, diabetic blindness and psoriasis, excessive angiogenesis is occurring; and in diseases such as coronary artery disease and stroke insufficient angiogenesis is the problem.



A novel anti-angiogenic agent

Researchers in the Cancer Research UK Molecular Oncology Laboratory at Oxford University have now identified a new inhibitor of endothelial cell proliferation with possible applications in the treatment of those disorders listed above which are characterised by excessive angiogenesis.


For example, solid cancer tumours are often characterised as being angiogenic, i.e. having an increased blood supply. One promising new treatment for solid tumours proposes to cut off the tumour’s blood supply with subsequent tumour shrinkage. Endothelial cells that line normal blood vessels are usually quiescent while those within tumour blood vessels are proliferating. Anti-angiogenic agents that can selectively inhibit proliferating endothelial cells or cytotoxic agents that can be delivered to the tumour vasculature have huge potential for the treatment of solid tumours.

Oxford, Imperial College and Cancer Research UK scientists, led by Professor Adrian Harris, have now identified a new agent for solving this problem. An anti-angiogenic peptide has been isolated and characterised. This peptide is a new member of the family of anti-angiogenic molecules that includes angiostatin which have for some years been of great interest to the pharmaceutical community. It has been shown in experiments to be an effective inhibitor of endothelial cell proliferation.

A new lead in the fight against Coronary Artery Disease

Alternatively, it has been found that the antibody to the peptide is effective in promoting the proliferation of endothelial cells and is thus a potential angiogenic agent for the treatment of disorders such as coronary artery disease. Angiogenic therapy can alleviate coronary artery disease by stimulating new vessel growth and returning blood flow to the heart, through the delivery of angiogenic proteins or their genes to this organ. Endothelial cells that line blood vessels are the initial targets for promoting new vessel growth. Therefore new biological agents that can stimulate endothelial cell growth, such as this antibody, are important candidates for angiogenic therapy.

Isis Innovation, Oxford University’s technology transfer company, holds the patent application for this project and is actively seeking partners for the licensing and commercial development of these technologies.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/779.html

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>