Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising multi-strain HIV vaccine candidate emerges

20.08.2002


AIDS researchers have developed a candidate vaccine strategy that, for the first time, demonstrates an ability to elicit antibodies that block the infection of multiple HIV virus strains -- an elusive scientific goal that has been pursued for a decade.



The candidate vaccine - still early in developmental stages at the Institute of Human Virology (IHV) -- is described in a report to appear during the week of Aug. 19-23 in the U.S. Proceedings in the National Academy of Sciences (PNAS). It is authored by Drs. Timothy Fouts, Anthony Devico, and colleagues at the IHV, a center of the University of Maryland Biotechnology Institute and affiliated with the University of Maryland Medical Center, and Dr. Ranajit Pal and colleagues at Advanced BioScience Laboratories, Inc. (ABL) in Kensington, Md.

One of the major challenges in developing an effective AIDS vaccine has long been the fact that the virus that causes AIDS, much like the influenza virus, exists as multiple strains that present many different faces to the immune system, say the authors. The surface of the AIDS virus, HIV, is coated with a protein called gp120 that has chemical features that vary from strain to strain. It has been difficult for researchers to find a single vaccine component that is able to generate antibodies that recognize the many forms of gp120 that exist in nature.


The IHV/ABL research team approached the problem by recognizing that all gp120 molecules have a shared characteristic that allows all HIV strains to bind a molecule on human target cells called CD4. Importantly, once gp120 forms a complex with CD4, it undergoes structural and chemical changes that reveal features shared by all HIV strains.

Taking advantage of this knowledge, the team produced artificial gp120-CD4 complexes that were chemically treated in order to glue or "crosslink" them together. The complexes were then used to generate antibodies in small animals and monkeys.

"The gp120-CD4 complex has shown a consistent ability to generate antibodies that neutralize a wide range of HIV-1 isolates," says Dr. Devico, assistant professor, IHV. "The preliminary findings indicate the gp120-CD4 complex might serve as a useful model for HIV vaccine development," he adds.

Long the hope of AIDS researchers, it now appears that developing a single HIV vaccine for multiple viruses is indeed an increasingly realistic endeavor, according to IHV Director Dr. Robert C. Gallo.

"This is one of the more exciting findings that I have witnessed in HIV/AIDS research since the early days when it seemed scientific advances were announced regularly," says Dr. Gallo, who is also co-discover of the AIDS virus.

"From the beginning of the field of HIV/AIDS research, the most important goal was to develop a vaccine that prevents virus infection," says Dr. Gallo. "The difficulties have been many, spanning close to two decades. But this has the potential to bring us a major step forward in that ultimate quest. At the Institute of Human Virology, we will make this our prime effort."

The timing couldn’t be more critical, he says.

"HIV/AIDS has overcome the 1918 influenza pandemic and bubonic plague of the 14th century to become the worst epidemic and deadliest disease in medical history," comments Dr. George Lewis, director of the IHV’s Division of Vaccine Development. "Twenty-five million persons have died worldwide, another 40 million are infected and the numbers are rapidly escalating second to second, he explains.

"While advances in therapeutics are helping many with the disease live longer and healthier lives," Lewis adds, "most of the world lacks theses resources and our best bet to stop the AIDS epidemic is a vaccine. We hope this will become an effective tool toward that global goal."

Though designed as a preventative vaccine, the complex might also be useful as a therapeutic vaccine, say the authors. The gp120-CD4 complex will continue to be evaluated with regard to safety and immunogenicity within the next two years should precede into Phase I clinical trials, according to Dr. Gallo.

Gwen Fariss Newman | EurekAlert!
Further information:
http://www.umbi.umd.edu/

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>