Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising multi-strain HIV vaccine candidate emerges

20.08.2002


AIDS researchers have developed a candidate vaccine strategy that, for the first time, demonstrates an ability to elicit antibodies that block the infection of multiple HIV virus strains -- an elusive scientific goal that has been pursued for a decade.



The candidate vaccine - still early in developmental stages at the Institute of Human Virology (IHV) -- is described in a report to appear during the week of Aug. 19-23 in the U.S. Proceedings in the National Academy of Sciences (PNAS). It is authored by Drs. Timothy Fouts, Anthony Devico, and colleagues at the IHV, a center of the University of Maryland Biotechnology Institute and affiliated with the University of Maryland Medical Center, and Dr. Ranajit Pal and colleagues at Advanced BioScience Laboratories, Inc. (ABL) in Kensington, Md.

One of the major challenges in developing an effective AIDS vaccine has long been the fact that the virus that causes AIDS, much like the influenza virus, exists as multiple strains that present many different faces to the immune system, say the authors. The surface of the AIDS virus, HIV, is coated with a protein called gp120 that has chemical features that vary from strain to strain. It has been difficult for researchers to find a single vaccine component that is able to generate antibodies that recognize the many forms of gp120 that exist in nature.


The IHV/ABL research team approached the problem by recognizing that all gp120 molecules have a shared characteristic that allows all HIV strains to bind a molecule on human target cells called CD4. Importantly, once gp120 forms a complex with CD4, it undergoes structural and chemical changes that reveal features shared by all HIV strains.

Taking advantage of this knowledge, the team produced artificial gp120-CD4 complexes that were chemically treated in order to glue or "crosslink" them together. The complexes were then used to generate antibodies in small animals and monkeys.

"The gp120-CD4 complex has shown a consistent ability to generate antibodies that neutralize a wide range of HIV-1 isolates," says Dr. Devico, assistant professor, IHV. "The preliminary findings indicate the gp120-CD4 complex might serve as a useful model for HIV vaccine development," he adds.

Long the hope of AIDS researchers, it now appears that developing a single HIV vaccine for multiple viruses is indeed an increasingly realistic endeavor, according to IHV Director Dr. Robert C. Gallo.

"This is one of the more exciting findings that I have witnessed in HIV/AIDS research since the early days when it seemed scientific advances were announced regularly," says Dr. Gallo, who is also co-discover of the AIDS virus.

"From the beginning of the field of HIV/AIDS research, the most important goal was to develop a vaccine that prevents virus infection," says Dr. Gallo. "The difficulties have been many, spanning close to two decades. But this has the potential to bring us a major step forward in that ultimate quest. At the Institute of Human Virology, we will make this our prime effort."

The timing couldn’t be more critical, he says.

"HIV/AIDS has overcome the 1918 influenza pandemic and bubonic plague of the 14th century to become the worst epidemic and deadliest disease in medical history," comments Dr. George Lewis, director of the IHV’s Division of Vaccine Development. "Twenty-five million persons have died worldwide, another 40 million are infected and the numbers are rapidly escalating second to second, he explains.

"While advances in therapeutics are helping many with the disease live longer and healthier lives," Lewis adds, "most of the world lacks theses resources and our best bet to stop the AIDS epidemic is a vaccine. We hope this will become an effective tool toward that global goal."

Though designed as a preventative vaccine, the complex might also be useful as a therapeutic vaccine, say the authors. The gp120-CD4 complex will continue to be evaluated with regard to safety and immunogenicity within the next two years should precede into Phase I clinical trials, according to Dr. Gallo.

Gwen Fariss Newman | EurekAlert!
Further information:
http://www.umbi.umd.edu/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>