Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New broccoli compound appears promising against breast cancer

19.08.2002


In the future, a "broccoli-pill" a day may help keep breast cancer at bay. Researchers have developed a new compound, designed from a known anticancer agent found in broccoli, that shows promise as a breast cancer preventive.



Apparently less toxic than its natural counterpart, the compound could be marketed for cancer prevention, the researchers say. Their findings were described at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.

Tests in animals have shown encouraging results, but no human studies have been done. If tests confirm the findings, the compound could be developed into a once-a-day pill or vitamin component for cancer prevention and perhaps be on the market in seven to ten years, the researchers say.


"It may be easier to take a cancer-prevention pill once a day rather than rely on massive quantities of fruits and vegetables," says Jerry Kosmeder, Ph.D., research assistant professor at the University of Illinois at Chicago and an investigator in the study.

Called oxomate, the synthetic compound works like its natural counterpart, sulforaphane, which was recently identified as a cancer-preventive agent in broccoli and other cruciferous vegetables (such as cabbage and Brussels sprouts). Both compounds boost the body’s production of phase II enzymes, which can detoxify cancer-causing chemicals and reduce cancer risk.

But the natural broccoli compound, sulforaphane, can be toxic in high doses, warns Kosmeder. He cites laboratory studies in which the compound, above certain levels, killed cultured animal cells. It is also difficult and expensive to synthesize. These factors make sulforaphane a poor candidate for drug development, he said.

Kosmeder designed oxomate to be less toxic than its parent compound by removing the chemical components that appear to be responsible for this toxicity. In tests on cultured liver cells, oxomate was seven times less toxic than sulforaphane, the researcher said. The synthetic compound is also cheaper and easier to produce, he added.

In tests on female rats, those that were fed oxomate after exposure to cancer-inducing chemicals had up to a 50 percent reduction in the number of breast tumors compared to rats that did not receive the compound, said Kosmeder.

After the initial discovery of sulforaphane as a broccoli component (by researchers at Johns Hopkins University in Baltimore), consumers have been urged to eat more of the vegetable and its close relatives to obtain its cancer-fighting benefit. For those who don’t like to eat the familiar green stalks and their bushy flowerets, consumers have a growing number of dietary options, including sprouts, teas and tablets made from natural concentrates.

Kosmeder believes that these variations present a dosing challenge, as not all broccoli-derived products contain the same amount of sulforaphane. This is due to variations in the vegetable’s processing, growing conditions and strain, he said.

"Oxomate would give you a definitive benefit; you’d know exactly how much you’re getting everyday, its exact benefit and risk," the researcher says.

Oxomate could be taken along with other cancer preventive agents, including nutrients and drugs, in an effort to maximize protection, he said.

Tamoxifen is currently the only FDA approved drug for breast cancer prevention in high-risk women. It works by a different mechanism from oxomate’s. Tamoxifen helps a woman who has estrogen-dependent tumors, but may not help those with non-estrogen-dependent tumors, says Kosmeder. A drug based on oxomate would help prevent cancer formation regardless of whether the tumor is estrogen-dependent or non-estrogen-dependent, he says.

If subsequent tests for preventing other types of cancer prove effective, then oxomate might be useful for anyone who is at increased risk of cancer due to exposure to cancer-causing agents, according to Kosmeder. The drug would be particularly beneficial for those at highest risk, such as smokers, he says.

Consumers are still urged to continue eating healthful amounts of fruits and vegetables and to reduce their exposure to cancer risk factors, such as smoking, the researcher says.

Kosmeder conducted his oxomate studies as part of a research team headed by John M. Pezzuto, Ph.D., head of the department of medicinal chemistry and pharmacognosy at the university and deputy director of its Cancer Center.


The National Cancer Institute provided funding for this study.
The poster on this research, MEDI 98, will be presented at 8:00 p.m., Sunday, Aug. 18, at the Hynes Convention Center, Hall B, during a general poster session, and at 8:00 p.m., Monday, Aug. 19, at the Hynes Convention Center, Hall B, during Sci-Mix).

Jerry Kosmeder, Ph.D., is a research assistant professor in department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago.

John M. Pezzuto, Ph.D., is head of the department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago. He is also deputy director of the university’s Cancer Center.

Charmayne Marsh | EurekAlert!

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>