Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New broccoli compound appears promising against breast cancer

19.08.2002


In the future, a "broccoli-pill" a day may help keep breast cancer at bay. Researchers have developed a new compound, designed from a known anticancer agent found in broccoli, that shows promise as a breast cancer preventive.



Apparently less toxic than its natural counterpart, the compound could be marketed for cancer prevention, the researchers say. Their findings were described at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.

Tests in animals have shown encouraging results, but no human studies have been done. If tests confirm the findings, the compound could be developed into a once-a-day pill or vitamin component for cancer prevention and perhaps be on the market in seven to ten years, the researchers say.


"It may be easier to take a cancer-prevention pill once a day rather than rely on massive quantities of fruits and vegetables," says Jerry Kosmeder, Ph.D., research assistant professor at the University of Illinois at Chicago and an investigator in the study.

Called oxomate, the synthetic compound works like its natural counterpart, sulforaphane, which was recently identified as a cancer-preventive agent in broccoli and other cruciferous vegetables (such as cabbage and Brussels sprouts). Both compounds boost the body’s production of phase II enzymes, which can detoxify cancer-causing chemicals and reduce cancer risk.

But the natural broccoli compound, sulforaphane, can be toxic in high doses, warns Kosmeder. He cites laboratory studies in which the compound, above certain levels, killed cultured animal cells. It is also difficult and expensive to synthesize. These factors make sulforaphane a poor candidate for drug development, he said.

Kosmeder designed oxomate to be less toxic than its parent compound by removing the chemical components that appear to be responsible for this toxicity. In tests on cultured liver cells, oxomate was seven times less toxic than sulforaphane, the researcher said. The synthetic compound is also cheaper and easier to produce, he added.

In tests on female rats, those that were fed oxomate after exposure to cancer-inducing chemicals had up to a 50 percent reduction in the number of breast tumors compared to rats that did not receive the compound, said Kosmeder.

After the initial discovery of sulforaphane as a broccoli component (by researchers at Johns Hopkins University in Baltimore), consumers have been urged to eat more of the vegetable and its close relatives to obtain its cancer-fighting benefit. For those who don’t like to eat the familiar green stalks and their bushy flowerets, consumers have a growing number of dietary options, including sprouts, teas and tablets made from natural concentrates.

Kosmeder believes that these variations present a dosing challenge, as not all broccoli-derived products contain the same amount of sulforaphane. This is due to variations in the vegetable’s processing, growing conditions and strain, he said.

"Oxomate would give you a definitive benefit; you’d know exactly how much you’re getting everyday, its exact benefit and risk," the researcher says.

Oxomate could be taken along with other cancer preventive agents, including nutrients and drugs, in an effort to maximize protection, he said.

Tamoxifen is currently the only FDA approved drug for breast cancer prevention in high-risk women. It works by a different mechanism from oxomate’s. Tamoxifen helps a woman who has estrogen-dependent tumors, but may not help those with non-estrogen-dependent tumors, says Kosmeder. A drug based on oxomate would help prevent cancer formation regardless of whether the tumor is estrogen-dependent or non-estrogen-dependent, he says.

If subsequent tests for preventing other types of cancer prove effective, then oxomate might be useful for anyone who is at increased risk of cancer due to exposure to cancer-causing agents, according to Kosmeder. The drug would be particularly beneficial for those at highest risk, such as smokers, he says.

Consumers are still urged to continue eating healthful amounts of fruits and vegetables and to reduce their exposure to cancer risk factors, such as smoking, the researcher says.

Kosmeder conducted his oxomate studies as part of a research team headed by John M. Pezzuto, Ph.D., head of the department of medicinal chemistry and pharmacognosy at the university and deputy director of its Cancer Center.


The National Cancer Institute provided funding for this study.
The poster on this research, MEDI 98, will be presented at 8:00 p.m., Sunday, Aug. 18, at the Hynes Convention Center, Hall B, during a general poster session, and at 8:00 p.m., Monday, Aug. 19, at the Hynes Convention Center, Hall B, during Sci-Mix).

Jerry Kosmeder, Ph.D., is a research assistant professor in department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago.

John M. Pezzuto, Ph.D., is head of the department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago. He is also deputy director of the university’s Cancer Center.

Charmayne Marsh | EurekAlert!

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>