Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New broccoli compound appears promising against breast cancer

19.08.2002


In the future, a "broccoli-pill" a day may help keep breast cancer at bay. Researchers have developed a new compound, designed from a known anticancer agent found in broccoli, that shows promise as a breast cancer preventive.



Apparently less toxic than its natural counterpart, the compound could be marketed for cancer prevention, the researchers say. Their findings were described at the 224th national meeting of the American Chemical Society, the world’s largest scientific society.

Tests in animals have shown encouraging results, but no human studies have been done. If tests confirm the findings, the compound could be developed into a once-a-day pill or vitamin component for cancer prevention and perhaps be on the market in seven to ten years, the researchers say.


"It may be easier to take a cancer-prevention pill once a day rather than rely on massive quantities of fruits and vegetables," says Jerry Kosmeder, Ph.D., research assistant professor at the University of Illinois at Chicago and an investigator in the study.

Called oxomate, the synthetic compound works like its natural counterpart, sulforaphane, which was recently identified as a cancer-preventive agent in broccoli and other cruciferous vegetables (such as cabbage and Brussels sprouts). Both compounds boost the body’s production of phase II enzymes, which can detoxify cancer-causing chemicals and reduce cancer risk.

But the natural broccoli compound, sulforaphane, can be toxic in high doses, warns Kosmeder. He cites laboratory studies in which the compound, above certain levels, killed cultured animal cells. It is also difficult and expensive to synthesize. These factors make sulforaphane a poor candidate for drug development, he said.

Kosmeder designed oxomate to be less toxic than its parent compound by removing the chemical components that appear to be responsible for this toxicity. In tests on cultured liver cells, oxomate was seven times less toxic than sulforaphane, the researcher said. The synthetic compound is also cheaper and easier to produce, he added.

In tests on female rats, those that were fed oxomate after exposure to cancer-inducing chemicals had up to a 50 percent reduction in the number of breast tumors compared to rats that did not receive the compound, said Kosmeder.

After the initial discovery of sulforaphane as a broccoli component (by researchers at Johns Hopkins University in Baltimore), consumers have been urged to eat more of the vegetable and its close relatives to obtain its cancer-fighting benefit. For those who don’t like to eat the familiar green stalks and their bushy flowerets, consumers have a growing number of dietary options, including sprouts, teas and tablets made from natural concentrates.

Kosmeder believes that these variations present a dosing challenge, as not all broccoli-derived products contain the same amount of sulforaphane. This is due to variations in the vegetable’s processing, growing conditions and strain, he said.

"Oxomate would give you a definitive benefit; you’d know exactly how much you’re getting everyday, its exact benefit and risk," the researcher says.

Oxomate could be taken along with other cancer preventive agents, including nutrients and drugs, in an effort to maximize protection, he said.

Tamoxifen is currently the only FDA approved drug for breast cancer prevention in high-risk women. It works by a different mechanism from oxomate’s. Tamoxifen helps a woman who has estrogen-dependent tumors, but may not help those with non-estrogen-dependent tumors, says Kosmeder. A drug based on oxomate would help prevent cancer formation regardless of whether the tumor is estrogen-dependent or non-estrogen-dependent, he says.

If subsequent tests for preventing other types of cancer prove effective, then oxomate might be useful for anyone who is at increased risk of cancer due to exposure to cancer-causing agents, according to Kosmeder. The drug would be particularly beneficial for those at highest risk, such as smokers, he says.

Consumers are still urged to continue eating healthful amounts of fruits and vegetables and to reduce their exposure to cancer risk factors, such as smoking, the researcher says.

Kosmeder conducted his oxomate studies as part of a research team headed by John M. Pezzuto, Ph.D., head of the department of medicinal chemistry and pharmacognosy at the university and deputy director of its Cancer Center.


The National Cancer Institute provided funding for this study.
The poster on this research, MEDI 98, will be presented at 8:00 p.m., Sunday, Aug. 18, at the Hynes Convention Center, Hall B, during a general poster session, and at 8:00 p.m., Monday, Aug. 19, at the Hynes Convention Center, Hall B, during Sci-Mix).

Jerry Kosmeder, Ph.D., is a research assistant professor in department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago.

John M. Pezzuto, Ph.D., is head of the department of medicinal chemistry and pharmacognosy at the University of Illinois at Chicago. He is also deputy director of the university’s Cancer Center.

Charmayne Marsh | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>