Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound may immobilize AIDS virus, certain radionuclides

15.08.2002


’Something new and exciting’ found serendipitously



A compound that could potentially immobilize the AIDS virus or selectively extract radionuclides from nuclear wastes at various U.S.high-level storage sites has been developed by a researcher at Sandia National Laboratories who wasn’t even looking for it.

An article in the current issue of Science describes characteristics of the newly discovered, extremely active compound, called niobium heteropolyanions (hetero-poly-an-ions) or HPAs.


"It wasn’t difficult to synthesize, it was luck," lead researcher May Nyman says of her discovery. "I wasn’t going after it intentionally, but after I found it, I realized I had something new and exciting."

Nyman found the right conditions to synthesize the first niobium HPA, and then tweaked to create an assortment of them.

The entities became the first niobium HPAs ever reported - basic materials formed inexpensively at the relatively benign and easily achievable temperature and pressure of boiling water.

Unlike other HPAs, niobium HPAs are basic rather than acidic, which means they can survive longer and possibly even thrive in the generally basic or neutral environments of radioactive wastes and blood, respectively.

Preliminary work with Savannah River site indicates that the new compounds do indeed selectively remove certain radionuclides from their waste solutions.

To bind viruses, researchers have tested a host of HPA compositions, says Nyman. "In these exhaustive studies, it’s been found that HPAs with small amounts of iron or niobium have an especially strong binding effect. Now we have HPAs that are completely niobium."

HPAs in the form of oxides of vanadium, tungsten, and molybdenum have been known to researchers since the late 19th century. The compounds’ peripheries consist of voraciously active oxygen ions. These have long intrigued researchers because of their capabilities to do much useful chemistry, including bind viruses and large metal atoms such as some radionuclides.

Once such compounds bind with an AIDs virus, the virus is no longer capable of entering a cell to damage it. HPAs may also bind with radionuclides called actinides, which removes them from the mixture by phase separation for easier and safer storage.

While previously known HPAs were made cheaply and easily at room temperatures and pressures, they were known to be stable only in acid environments.

This behavior means they cannot function well in blood as antiviral agents, because blood is neither acidic nor basic but instead is neutral.

Even worse, the liquid nuclear wastes at most waste sites - for example, Hanford, Savannah River, and Oak Ridge - are extremely basic. These environments attack acidic compounds and cause them to fall apart, says Nyman.

Nyman’s discovery of the base-stable HPA came about when Sandia was called upon by the Savannah River Site to find the cause of a clogging problem at the site’s attempts to extract a dangerously radioactive isotope of cesium. The extraction called for passing nuclear waste solution through a column of pebble-sized materials called zeolites that sequester cesium into tiny pores. She found that the zeolites contained small amounts of an impurity that forms during manufacturing. The acidic manufacturing treatment of the zeolites led to column-clogging behavior of the impurity. Identifying the problem concluded her task, but scientific curiosity led her to attempt to create the compound as an independent entity.

"I was curious to see if I could synthesis it pure, rather than leave it merely as a discovered impurity," says Nyman.

Her research on developing and utilizing HPAs, will be soon be supported by two Laboratory-Directed Research and Development grants, as well as the Environmental Management Science Project out of the DOE Office of Science in collaboration with Savannah River site.

"One man’s trash is another’s treasure," Nyman says of her experience. "What used to be clogging columns could now be taking out radionuclides, so it can be Savannah River’s and DOE’s treasure in the end, as well."

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.


###
Story and images available at www.sandia.gov/news-center/news-releases/2002/mat-chem/mayday.html
Sandia National Laboratories’ World Wide Web home page is located at http://www.sandia.gov.
Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News and Events button.

Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165
PHONE: 505-844-8066 FAX: 505-844-0645

Neal Singer | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>