Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound may immobilize AIDS virus, certain radionuclides

15.08.2002


’Something new and exciting’ found serendipitously



A compound that could potentially immobilize the AIDS virus or selectively extract radionuclides from nuclear wastes at various U.S.high-level storage sites has been developed by a researcher at Sandia National Laboratories who wasn’t even looking for it.

An article in the current issue of Science describes characteristics of the newly discovered, extremely active compound, called niobium heteropolyanions (hetero-poly-an-ions) or HPAs.


"It wasn’t difficult to synthesize, it was luck," lead researcher May Nyman says of her discovery. "I wasn’t going after it intentionally, but after I found it, I realized I had something new and exciting."

Nyman found the right conditions to synthesize the first niobium HPA, and then tweaked to create an assortment of them.

The entities became the first niobium HPAs ever reported - basic materials formed inexpensively at the relatively benign and easily achievable temperature and pressure of boiling water.

Unlike other HPAs, niobium HPAs are basic rather than acidic, which means they can survive longer and possibly even thrive in the generally basic or neutral environments of radioactive wastes and blood, respectively.

Preliminary work with Savannah River site indicates that the new compounds do indeed selectively remove certain radionuclides from their waste solutions.

To bind viruses, researchers have tested a host of HPA compositions, says Nyman. "In these exhaustive studies, it’s been found that HPAs with small amounts of iron or niobium have an especially strong binding effect. Now we have HPAs that are completely niobium."

HPAs in the form of oxides of vanadium, tungsten, and molybdenum have been known to researchers since the late 19th century. The compounds’ peripheries consist of voraciously active oxygen ions. These have long intrigued researchers because of their capabilities to do much useful chemistry, including bind viruses and large metal atoms such as some radionuclides.

Once such compounds bind with an AIDs virus, the virus is no longer capable of entering a cell to damage it. HPAs may also bind with radionuclides called actinides, which removes them from the mixture by phase separation for easier and safer storage.

While previously known HPAs were made cheaply and easily at room temperatures and pressures, they were known to be stable only in acid environments.

This behavior means they cannot function well in blood as antiviral agents, because blood is neither acidic nor basic but instead is neutral.

Even worse, the liquid nuclear wastes at most waste sites - for example, Hanford, Savannah River, and Oak Ridge - are extremely basic. These environments attack acidic compounds and cause them to fall apart, says Nyman.

Nyman’s discovery of the base-stable HPA came about when Sandia was called upon by the Savannah River Site to find the cause of a clogging problem at the site’s attempts to extract a dangerously radioactive isotope of cesium. The extraction called for passing nuclear waste solution through a column of pebble-sized materials called zeolites that sequester cesium into tiny pores. She found that the zeolites contained small amounts of an impurity that forms during manufacturing. The acidic manufacturing treatment of the zeolites led to column-clogging behavior of the impurity. Identifying the problem concluded her task, but scientific curiosity led her to attempt to create the compound as an independent entity.

"I was curious to see if I could synthesis it pure, rather than leave it merely as a discovered impurity," says Nyman.

Her research on developing and utilizing HPAs, will be soon be supported by two Laboratory-Directed Research and Development grants, as well as the Environmental Management Science Project out of the DOE Office of Science in collaboration with Savannah River site.

"One man’s trash is another’s treasure," Nyman says of her experience. "What used to be clogging columns could now be taking out radionuclides, so it can be Savannah River’s and DOE’s treasure in the end, as well."

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.


###
Story and images available at www.sandia.gov/news-center/news-releases/2002/mat-chem/mayday.html
Sandia National Laboratories’ World Wide Web home page is located at http://www.sandia.gov.
Sandia news releases, news tips, science photo gallery, and periodicals can be found at the News and Events button.

Sandia National Laboratories
A Department of Energy National Laboratory
Managed and Operated by Sandia Corporation
ALBUQUERQUE, NM LIVERMORE, CA
MEDIA RELATIONS DEPARTMENT MS 0165
ALBUQUERQUE, NM 87185-0165
PHONE: 505-844-8066 FAX: 505-844-0645

Neal Singer | EurekAlert!

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>