Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18F-FDG PET predicts lymphoma treatment outcome

05.08.2002


A new and somewhat controversial study published in the August issue of the Journal of Nuclear Medicine suggests that 18F-FDG PET results obtained after the first cycle of treatment can better predict progression-free survival in patients with aggressive non-Hodgkin’s lymphoma (NHL) or Hodgkin’s disease (HD) than PET scans conducted at the end of treatment.



Physicians at the Weill Medical College of Cornell and the New York Presbyterian Hospital in New York reported on 23 patients who received PET scans before and after one cycle of treatment and also at the completion of chemotherapy. PET was accurate 87% of the time after one cycle but only 70% of the time after completion of chemotherapy. Sensitivity, i.e., the ability to detect the FDG and hence disease, was also significantly higher after one cycle, at 82% v. 45.5%. In particular, in cases in which results from the first cycle differed from the results following completion of therapy, the results from the first cycle scan were more accurate. Ninety percent of patients with positive 18F-FDG PET results after one cycle experienced disease relapse, while 85% who had negative 18F-FDG PET findings after one cycle remained in remission. The authors concluded that PET was a better predictor of outcome and response to therapy after just one cycle of chemotherapy than after completion.

PET stands for positron emission tomography. Because of its unique ability to measure metabolic activity–or the efficiency of the cells converting food to energy--PET provides accurate, noninvasive detection and staging of many cancers. A radiopharmaceutical, such as 18F-FDG (fluorodeoxyglucose), which includes a radionuclide (a radioactive element) is injected into the patient and gives off signals that are measured by a PET scanner. Because cancer cells are more metabolically active, they show up on the PET images more intensely than normal tissue.


Using 18F-FDG PET to predict outcomes and response to therapy early in treatment is one of the most important new uses of this technology. It is particularly helpful in lymphoma, where tumors can persist after successful treatment. Conventional imaging with CT or MRI has difficulty differentiating between residual masses harboring tumor and those that are scar tissue. Determining at what point during chemotherapy a PET study should be ordered is a major issue in the nuclear medicine community. Debate continues regarding the timing of and access to this procedure.

The study also looked specifically at the results for patients whose diagnosis or original staging placed them in the category of poor-prognosis, and found similar results for this group. According to the study authors, 18F-FDG PET may be especially useful for these patients, since early evidence of persistent disease may mandate innovative intervention such as bone marrow transplantation.

The study reported a statistically significant number of false negatives in patients who had completed treatment, which contributed to its lower value as a predictor at the end of treatment. Six patients who had a false-negative FDG uptake at the completion of treatment ultimately relapsed. The authors noted that this could be the result of small amounts of disease that remained and escaped detection because of the resolution limitations of the coincidence PET scanner used in the study.

In a commentary accompanying the article in JNM, Val Lowe, MD and Gregory Wiseman, MD, of the Department of Radiology at the Mayo Clinic took issue with parts of the study’s findings, and elements of the study makeup. While commending the authors’ objectives, Lowe and Wisemen noted that the use of a coincidence rather than dedicated full-ring PET camera, which has less sensitivity, could have affected the results, particularly as they related to end-of-cycle findings of disease. They pointed to studies that showed dedicated PET at the completion of therapy had a 91% sensitivity in predicting disease relapse (v. the 45.5% in the Kostakoglu study). Nevertheless, the study authors emphasize the fact that failure to achieve a response can be predicted just after one cycle of therapy at which time second-line therapy or stem cell transplantation can be considered earlier prior to completing the full course of chemotherapy, without patients experiencing unnecessary side effects.

Lowe and Wiseman also expressed concerns about the size and makeup of the study group, noting that there were only 30 patients enrolled (the study report focuses on 23). The fact that it was a small study looking at different diseases, being treated differently, and at different points in their treatments make it difficult to make meaningful comparisons, they felt. According to the American Cancer Society, there will be an estimated 60,900 new cases of lymphoma in 2002, including 7,000 cases of Hodgkin’s disease and 53,900 cases of non-Hodgkin’s lymphoma. An estimated 25,800 people will die from the disease (24,400 NHL, 1400 HD)

"PET Predicts Prognosis After 1 Cycle of Chemotherapy in Aggressive Lymphoma and Hodgkin’s Disease" was written by Lale Kostakoglu, MD, Division of Nuclear Medicine, Department of Radiology; Morton Coleman, MD, and John P. Leonard, MD, Center for Lymphoma and Myeloma, Division of Hematology and Oncology, Department of Medicine; Ichiei Kuji, MD, Holly Zoe, and Stanley J. Goldsmith, MD, Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, New York.


Copies of the article and images related to the study and the commentary are available to media upon request to Karen Lubieniecki at Karenlub@aol.com, (703) 683-0357. Copies of this and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.

Karen Lubieniecki | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>