Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18F-FDG PET predicts lymphoma treatment outcome

05.08.2002


A new and somewhat controversial study published in the August issue of the Journal of Nuclear Medicine suggests that 18F-FDG PET results obtained after the first cycle of treatment can better predict progression-free survival in patients with aggressive non-Hodgkin’s lymphoma (NHL) or Hodgkin’s disease (HD) than PET scans conducted at the end of treatment.



Physicians at the Weill Medical College of Cornell and the New York Presbyterian Hospital in New York reported on 23 patients who received PET scans before and after one cycle of treatment and also at the completion of chemotherapy. PET was accurate 87% of the time after one cycle but only 70% of the time after completion of chemotherapy. Sensitivity, i.e., the ability to detect the FDG and hence disease, was also significantly higher after one cycle, at 82% v. 45.5%. In particular, in cases in which results from the first cycle differed from the results following completion of therapy, the results from the first cycle scan were more accurate. Ninety percent of patients with positive 18F-FDG PET results after one cycle experienced disease relapse, while 85% who had negative 18F-FDG PET findings after one cycle remained in remission. The authors concluded that PET was a better predictor of outcome and response to therapy after just one cycle of chemotherapy than after completion.

PET stands for positron emission tomography. Because of its unique ability to measure metabolic activity–or the efficiency of the cells converting food to energy--PET provides accurate, noninvasive detection and staging of many cancers. A radiopharmaceutical, such as 18F-FDG (fluorodeoxyglucose), which includes a radionuclide (a radioactive element) is injected into the patient and gives off signals that are measured by a PET scanner. Because cancer cells are more metabolically active, they show up on the PET images more intensely than normal tissue.


Using 18F-FDG PET to predict outcomes and response to therapy early in treatment is one of the most important new uses of this technology. It is particularly helpful in lymphoma, where tumors can persist after successful treatment. Conventional imaging with CT or MRI has difficulty differentiating between residual masses harboring tumor and those that are scar tissue. Determining at what point during chemotherapy a PET study should be ordered is a major issue in the nuclear medicine community. Debate continues regarding the timing of and access to this procedure.

The study also looked specifically at the results for patients whose diagnosis or original staging placed them in the category of poor-prognosis, and found similar results for this group. According to the study authors, 18F-FDG PET may be especially useful for these patients, since early evidence of persistent disease may mandate innovative intervention such as bone marrow transplantation.

The study reported a statistically significant number of false negatives in patients who had completed treatment, which contributed to its lower value as a predictor at the end of treatment. Six patients who had a false-negative FDG uptake at the completion of treatment ultimately relapsed. The authors noted that this could be the result of small amounts of disease that remained and escaped detection because of the resolution limitations of the coincidence PET scanner used in the study.

In a commentary accompanying the article in JNM, Val Lowe, MD and Gregory Wiseman, MD, of the Department of Radiology at the Mayo Clinic took issue with parts of the study’s findings, and elements of the study makeup. While commending the authors’ objectives, Lowe and Wisemen noted that the use of a coincidence rather than dedicated full-ring PET camera, which has less sensitivity, could have affected the results, particularly as they related to end-of-cycle findings of disease. They pointed to studies that showed dedicated PET at the completion of therapy had a 91% sensitivity in predicting disease relapse (v. the 45.5% in the Kostakoglu study). Nevertheless, the study authors emphasize the fact that failure to achieve a response can be predicted just after one cycle of therapy at which time second-line therapy or stem cell transplantation can be considered earlier prior to completing the full course of chemotherapy, without patients experiencing unnecessary side effects.

Lowe and Wiseman also expressed concerns about the size and makeup of the study group, noting that there were only 30 patients enrolled (the study report focuses on 23). The fact that it was a small study looking at different diseases, being treated differently, and at different points in their treatments make it difficult to make meaningful comparisons, they felt. According to the American Cancer Society, there will be an estimated 60,900 new cases of lymphoma in 2002, including 7,000 cases of Hodgkin’s disease and 53,900 cases of non-Hodgkin’s lymphoma. An estimated 25,800 people will die from the disease (24,400 NHL, 1400 HD)

"PET Predicts Prognosis After 1 Cycle of Chemotherapy in Aggressive Lymphoma and Hodgkin’s Disease" was written by Lale Kostakoglu, MD, Division of Nuclear Medicine, Department of Radiology; Morton Coleman, MD, and John P. Leonard, MD, Center for Lymphoma and Myeloma, Division of Hematology and Oncology, Department of Medicine; Ichiei Kuji, MD, Holly Zoe, and Stanley J. Goldsmith, MD, Division of Nuclear Medicine, Department of Radiology, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, New York.


Copies of the article and images related to the study and the commentary are available to media upon request to Karen Lubieniecki at Karenlub@aol.com, (703) 683-0357. Copies of this and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.

Karen Lubieniecki | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>