Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds a mouse model for episodic neurological disorders

05.08.2002


For years, physicians have noticed surprising similarities in the factors that seem to trigger attacks in such episodic neurological disorders as migraine and dyskinesia. Common triggers include psychological stress, caffeine or alcohol ingestion, fatigue, hormonal fluctuations and exercise.

A new study shows that a mouse model can be used to investigate how these substances and environmental factors trigger symptomatic attacks. The researchers also identified two drugs that can prevent attacks of such disorders in mice.

The study is the first to use mice to investigate triggers of episodic attacks, which are much more difficult to study in humans. Though the symptoms of episodic disorders vary, the fact that many of them share the same trigger factors may suggest a common disease mechanism.



"We finally have a model we can use to find out how these triggers destabilize nervous system function," says senior author Ellen Hess, Ph.D., of the Department of Neurology at Johns Hopkins Hospital, where the study was conducted. It was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS) and appears in the August, 2002, issue of Pharmacology, Biochemistry and Behavior.

Dr. Hess and her colleagues studied a strain of mice with a gene mutation that causes them to have attacks of dyskinesia, or abnormal movements several times a day. The mutation affects calcium ion channels – tiny "gates" in cell membranes that control movement of electrically charged calcium ions into and out of cells. The movement disorder caused by this mutation is known as tottering syndrome in mice. The symptoms in tottering mice are similar to those of an episodic movement disorder in humans known as paroxysmal dyskinesia.

The researchers exposed the tottering mice to the most common triggers of human episodic disorders – stress, caffeine, and ethanol – and found that all three of these factors generated attacks in the mice. This shows that the tottering mice can be used to study how environmental factors cause episodic symptoms. The researchers also tested two drugs that block calcium ions from entering cells and found that these drugs could prevent tottering attacks in the mice. The first drug, nimodipine, blocked caffeine- and ethanol-induced attacks in the mice, while the second drug, MK801, blocked caffeine- and stress-triggered attacks.

"We can use the mouse model to understand how triggers work in single gene disorders, which are fairly rare, and then apply the information to more prevalent episodic disorders, like common migraine," says lead author Brandy Fureman, Ph.D., of the NINDS. The term common migraine refers to migraines that are not preceded by other neurological symptoms (auras). These headaches affect an estimated 20 to 24 million people in the United States. Other episodic neurological disorders include periodic paralysis, hemiplegic migraine, and episodic ataxia.

"The study opens up a whole new way to look at triggers of attacks. Stress, caffeine and alcohol are factors we’ve all known about for years, but we still haven’t figured out why they can cause certain symptoms in certain people," says Dr. Fureman. Now, researchers will be able to control the onset of attacks in studies of mice to learn how trigger factors cause a shift from normal brain function to the abnormal activity that causes symptoms.

Because common migraine and other episodic neurological disorders have the same triggers as the tottering syndrome in mice, the researchers hope that their findings will improve understanding of these disorders and lead to effective treatments for humans.

One of the drugs tested, nimodipine, is commonly used in humans to treat cardiac problems like hypertension. "We are finding a new use for an old drug," Dr. Fureman says. "Drugs that have already gone through the FDA’s rigorous safety testing, like nimodipine, are easier to move into clinical trials once the basic research progresses to that point."

"The next step is to start testing drugs that we think can interfere with those three triggers to stop the neurological dysfunction in humans," says Dr. Hess. She and her colleagues are now using the tottering mice to test compounds that are currently used by humans for other disorders.

The NINDS is a component of the National Institutes of Health in Bethesda, Maryland, and is the nation’s primary supporter of biomedical research on the brain and nervous system.


Fureman BE, Jinnah HA, Hess EJ. "Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering." Pharmacology, Biochemistry and Behavior, Vol. 73, No. 2, August 2002.


Tania Zeigler | EurekAlert!
Further information:
http://www.ninds.nih.gov/

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>