Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facing apparent resistance to antibiotics

30.07.2008
Researchers at the Hebrew University of Jerusalem have found new ways to kill dormant bacteria that have become seemingly resistant to antibiotics.

Although antibiotics are the most preferred treatment against bacterial infection and disease, it has become apparent that some diseases can't be treated simply by administering antibiotics.

Sub-populations of some bacteria can avoid the lethal antibiotics by decreasing their metabolism, remaining dormant for days and waiting for the right opportunity to strike again.

Researchers at the Hebrew University studied these dormant bacteria and found two new ways to kill them: either by subjecting the bacteria to a fresh dose of nutrients together with the antibiotic treatment, or by infecting those dormant bacteria with phages, namely viruses that attack bacteria. In both cases the survival of these dormant bacteria was significantly reduced.

Bio-physicist Dr. Nathalie Q. Balaban at the Hebrew University's Racah Institute of Physics, doctoral student Orit Gefen and master's student Sivan Pearl, recently reported their findings in Proceedings of the National Academy of Sciences USA and PLoS Biology.

Their research shows that sub-populations of the E. Coli bacteria persist antibiotic treatments by shutting down their activity. The activity was determined by following the production of fluorescent proteins in bacteria trapped on micro-chips.

The team discovered that protein production does occur in dormant bacteria, immediately after exiting the stationary phase. By exposing the entire bacteria population to antibiotics during this time-frame, the team significantly reduced the number of dormant bacteria that survived. These results offer a potentially new way to tackle dormant bacteria, which are the main reason for failure of antibiotic treatments in diseases such as tuberculosis, which often requires months or years of antibiotic treatment.

Also, the results challenge current views as to bacterial dormancy, and suggest an alternative model for the differentiation of normal bacterial cells into dormant ones.

Together with Prof. Oppenheim from the Hebrew University-Hadassah Medical School, the team also studied the interaction between dormant bacteria and phages. They tried to determine whether dormancy evolved as a protection mechanism against phage attack, thus allowing the bacteria to survive under stressful environments. The team showed that the existence of dormant bacteria provides advantage when the population is attacked by lysogenic phage (a phage that may reside inside the bacteria for some generations and only then multiply and attack). Nevertheless, dormancy provided no protection when the bacteria were attacked by lytic phage that reproduces and kills immediately.

According to Dr. Balaban, "These results might lead to new phage therapies for fighting infections that persist despite the antibiotics."

Rebecca Zeffert | alfa
Further information:
http://www.savion.huji.ac.il

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>