Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facing apparent resistance to antibiotics

30.07.2008
Researchers at the Hebrew University of Jerusalem have found new ways to kill dormant bacteria that have become seemingly resistant to antibiotics.

Although antibiotics are the most preferred treatment against bacterial infection and disease, it has become apparent that some diseases can't be treated simply by administering antibiotics.

Sub-populations of some bacteria can avoid the lethal antibiotics by decreasing their metabolism, remaining dormant for days and waiting for the right opportunity to strike again.

Researchers at the Hebrew University studied these dormant bacteria and found two new ways to kill them: either by subjecting the bacteria to a fresh dose of nutrients together with the antibiotic treatment, or by infecting those dormant bacteria with phages, namely viruses that attack bacteria. In both cases the survival of these dormant bacteria was significantly reduced.

Bio-physicist Dr. Nathalie Q. Balaban at the Hebrew University's Racah Institute of Physics, doctoral student Orit Gefen and master's student Sivan Pearl, recently reported their findings in Proceedings of the National Academy of Sciences USA and PLoS Biology.

Their research shows that sub-populations of the E. Coli bacteria persist antibiotic treatments by shutting down their activity. The activity was determined by following the production of fluorescent proteins in bacteria trapped on micro-chips.

The team discovered that protein production does occur in dormant bacteria, immediately after exiting the stationary phase. By exposing the entire bacteria population to antibiotics during this time-frame, the team significantly reduced the number of dormant bacteria that survived. These results offer a potentially new way to tackle dormant bacteria, which are the main reason for failure of antibiotic treatments in diseases such as tuberculosis, which often requires months or years of antibiotic treatment.

Also, the results challenge current views as to bacterial dormancy, and suggest an alternative model for the differentiation of normal bacterial cells into dormant ones.

Together with Prof. Oppenheim from the Hebrew University-Hadassah Medical School, the team also studied the interaction between dormant bacteria and phages. They tried to determine whether dormancy evolved as a protection mechanism against phage attack, thus allowing the bacteria to survive under stressful environments. The team showed that the existence of dormant bacteria provides advantage when the population is attacked by lysogenic phage (a phage that may reside inside the bacteria for some generations and only then multiply and attack). Nevertheless, dormancy provided no protection when the bacteria were attacked by lytic phage that reproduces and kills immediately.

According to Dr. Balaban, "These results might lead to new phage therapies for fighting infections that persist despite the antibiotics."

Rebecca Zeffert | alfa
Further information:
http://www.savion.huji.ac.il

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>