Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food inspection technology could kill waiter jokes

30.06.2008
New inspection X-ray technology developed by European researchers is helping to ensure that the only thing in people’s dinners is the food itself.

Finding a snail in a salad, a fish bone in a supposedly boneless fillet or opening a soup packet to reveal mouldy contents is an unpleasant – and potentially unsafe – experience. Small foreign bodies and packaging defects are frequently not detected by food producers, but a new X-ray inspection technology developed by European researchers is ensuring that the only thing in people’s dinners is the food itself.

For consumers, a more effective method of inspecting food products before they reach supermarket shelves means better-preserved and cleaner food on their dinner tables – and a reduction in the risk of food poisoning.

An improved inspection system also means producers can offer better quality produce, reduce the risk of spoilage, and gain a competitive edge over rivals.

Already in use commercially, the technology developed by the Modulinspex project uses low-energy X-rays to produce highly detailed images of food products and packaged goods. The images are then scanned via inspection software that can automatically detect any irregularities accurately and quickly.

The system can be used to check seals on food wrappers, locate packaging defects and find foreign particles of any size in any kind of food, from maggots in apples to grains of sand in bread.

Even in an era of high food standards and sterilised packaged produce, those problematic foreign bodies and packaging flaws are more common than most people realise, says Jørgen Rheinlænder, the managing director of Denmark-based InnospeXion, which helped develop the technology. Rheinlænder was the project coordinator for Modulinspex.

“Go down to your supermarket and pick up a package of dried pasta,” he says. “About one in ten will have pieces of pasta trapped in the seal that can let air and moisture in and spoil the product.”

Rheinlænder notes, for example, that some bacteria may spread on poorly sealed produce and go unnoticed by consumers until they end up spending the next day on the toilet or at the hospital.

Lower energy, higher definition
Until now X-ray inspection technology used by food processors was dominated by high-energy intensity systems not unlike those used to scan luggage at airports. These are able to detect a pebble in a package of corn but lack the resolution to pick out a grain of sand in a bag of flour.

The higher-resolution alternative, low-energy X-rays, had not been used because it took too long to scan the produce and would slow the rapid pace of production in modern processing and packaging plants.

The European researchers working in the EU-funded Modulinspex project have brought both greater speed and accuracy to the table.

By attaching a CMOS chip to the crystal that detects the X-rays in a low-energy system they have been able to build a detector capable of taking 300 images per second, enough to capture a crisp image of products moving on a conveyor belt at half-a-metre per second.

The X-ray images have a resolution of 0.1 millimetres – 16 times better than existing high-power systems, making it possible to detect objects as small and fine as a herring bone.

Modularity for easy adoption
The system is also modular, allowing hardware and software components to be adapted to suit the needs of any producer in the food industry.

“Most X-ray luggage scanners at airports are virtually identical because one type works anywhere,” Rheinlænder explains. “In the food industry, however, everyone has different requirements depending on the speed of the production line, the type and size of products being scanned and hygiene regulations.”

The consortium of companies involved in the project has already sold three of their systems to companies in Spain, the United Kingdom and Denmark. The systems were bought after the project partners held a demonstration at the Scandinavian Food-PharmaTech exhibition last November in Denmark.

The Modulinspex system, known as MCIS, also received the exhibition’s award for innovation.

Enormous market beyond food
Curiously, none of the three systems that were sold are being used in the food sector, confirming, in Rheinlænder’s view, the broader range of applications for the technology.

In the UK, for example, the system is being used by a company to inspect filters delivered by an outside supplier, while in Denmark it is being used to check the quality of fur used to make coats.

“The market for this technology is truly enormous,” he says. “In the food industry alone we can expect growth rates in excess of 20%… and we also see a market for using it in manufacturing, to inspect seals on car components, for example, or to check for counterfeit products.”

Meanwhile, Rheinlænder foresees demand in the food sector being driven not only by producers who want to offer better quality products but also by increasingly stringent food safety regulations in Europe and elsewhere.

Modulinspex received funding from the EU's Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89823

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>