Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new signal pathway important to diabetes research

04.06.2008
Scientists at Karolinska Institutet and Miami University have discovered that cells in the pancreas cooperate - signal - in a way hitherto unknown. The discovery can eventually be of significance to the treatment of diabetes.

The aim of the project was to find out how the healthy body regulates glucose concentrations in the blood.

Scientists have known for a long time that glucose is regulated with the help of hormones in the pancreas, which is to say that pancreatic beta cells produce insulin, which reduces sugar levels, and that alpha cells produce glucagon, which boosts them. This glucose balance must be kept within a very narrow interval, and we need both insulin and glucagon to remain in good health.

"A person with low blood sugar levels feels poorly and faint; a person with excessively high blood sugar levels gets diabetes," says Per-Olof Berggren, professor of experimental endocrinology at Karolinska Institutet and the leader of this study.

Much more is known about insulin secretion than glucagon secretion, and so Professor Berggren's team focused on the latter. They discovered that alpha cells also secreted glutamate, which facilitates glucagon release and makes it more efficient.

The scientists are working on the hypothesis that when glucose levels are raised in a healthy person, the beta cells become active and start to release insulin, which reduces sugar concentrations in the blood, upon which the alpha cells then start to secrete glucagon and glutamate. In this context, glutamate acts as a positive signal that tells the alpha cells that it is time to accelerate the production of glucagon to prevent glucose levels from falling too low.

"It's this signal pathway that is our discovery," says Professor Berggren. "This interaction between beta cells and alpha cells is crucial for normal blood sugar regulation."

The discovery also means that when the beta cells fail to produce insulin properly, as is the case in diabetes, the alpha cells' signal path is also blocked, which upsets the glucose balance even more. The team hope that their discovery of the signal pathway will eventually give new impetus to clinical diabetes research.

"Maybe we'll be able to achieve better blood sugar regulation in diabetes patients if we target more the glucagon/glutamate rather than just the insulin", says Professor Berggren.

Publication: 'Glutamate is a positive autocrine signal for glucagon release'. Authors: O Cabrera, MC Jaques-Silva, S Speier, S-N Yang, M Köler, A Fachado, E Vieira, JR Zierath, R Kibbey, DM Berman, NS Kenyon, C Ricordi, A Caicedo and P-O Berggren. Cell Metabolism, 4 June 2008.

For further information, please contact:

Professor Per-Olof Berggren,
Rolf Luft Centre for Diabetes and Endocrinology Research
Tel: +46(0)8-517 757 31
Email: per-olof.berggren@ki.se
Press Officer Katarina Sternudd
Tel: +46(0)8-524 838 95, +46(0)70-224 3895
Email: katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>