Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new signal pathway important to diabetes research

04.06.2008
Scientists at Karolinska Institutet and Miami University have discovered that cells in the pancreas cooperate - signal - in a way hitherto unknown. The discovery can eventually be of significance to the treatment of diabetes.

The aim of the project was to find out how the healthy body regulates glucose concentrations in the blood.

Scientists have known for a long time that glucose is regulated with the help of hormones in the pancreas, which is to say that pancreatic beta cells produce insulin, which reduces sugar levels, and that alpha cells produce glucagon, which boosts them. This glucose balance must be kept within a very narrow interval, and we need both insulin and glucagon to remain in good health.

"A person with low blood sugar levels feels poorly and faint; a person with excessively high blood sugar levels gets diabetes," says Per-Olof Berggren, professor of experimental endocrinology at Karolinska Institutet and the leader of this study.

Much more is known about insulin secretion than glucagon secretion, and so Professor Berggren's team focused on the latter. They discovered that alpha cells also secreted glutamate, which facilitates glucagon release and makes it more efficient.

The scientists are working on the hypothesis that when glucose levels are raised in a healthy person, the beta cells become active and start to release insulin, which reduces sugar concentrations in the blood, upon which the alpha cells then start to secrete glucagon and glutamate. In this context, glutamate acts as a positive signal that tells the alpha cells that it is time to accelerate the production of glucagon to prevent glucose levels from falling too low.

"It's this signal pathway that is our discovery," says Professor Berggren. "This interaction between beta cells and alpha cells is crucial for normal blood sugar regulation."

The discovery also means that when the beta cells fail to produce insulin properly, as is the case in diabetes, the alpha cells' signal path is also blocked, which upsets the glucose balance even more. The team hope that their discovery of the signal pathway will eventually give new impetus to clinical diabetes research.

"Maybe we'll be able to achieve better blood sugar regulation in diabetes patients if we target more the glucagon/glutamate rather than just the insulin", says Professor Berggren.

Publication: 'Glutamate is a positive autocrine signal for glucagon release'. Authors: O Cabrera, MC Jaques-Silva, S Speier, S-N Yang, M Köler, A Fachado, E Vieira, JR Zierath, R Kibbey, DM Berman, NS Kenyon, C Ricordi, A Caicedo and P-O Berggren. Cell Metabolism, 4 June 2008.

For further information, please contact:

Professor Per-Olof Berggren,
Rolf Luft Centre for Diabetes and Endocrinology Research
Tel: +46(0)8-517 757 31
Email: per-olof.berggren@ki.se
Press Officer Katarina Sternudd
Tel: +46(0)8-524 838 95, +46(0)70-224 3895
Email: katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>