Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study raises questions about prostate cancer therapies targeting IGF-1

05.05.2008
Therapies under development to treat prostate cancer by inhibiting the ability of insulin-like growth factor (IGF-1) to activate its target receptor could have unexpected results especially if a major tumor suppressor gene – p53 – is already compromised, according to new research by investigators at Fred Hutchinson Cancer Research Center.

IGF-1 is a polypeptide hormone that can influence growth, differentiation and survival of cells expressing the type 1 receptor (IGF-1R). Past clinical, epidemiological and experimental studies have strongly implicated IGF-1 as a contributing factor in the natural history of prostate cancer. However, very little has been done to prove absolutely that the expression or activation of the IGF-1 signaling pathway at physiologically relevant levels is sufficient to cause a healthy prostate cell to become a cancer cell.

Norman Greenberg, Ph.D., and colleagues conducted a pair of experiments by manipulating gene expression directly in the epithelial compartment of the mouse prostate gland to better understand the role of IGF-1R. In contrast to studies that correlated elevated levels of IGF-1 with the risk of developing prostate cancer, Greenberg’s research showed that eliminating IGF-1R expression in an otherwise normal mouse prostate caused the cells to proliferate and become hyperplastic. Although persistent loss of IGF-1R expression ultimately induced cell stasis and death, both of these processes are regulated by the tumor suppressor gene p53 that is commonly mutated in human prostate cancers. Hence the researchers hypothesized that tumors with compromised p53 might not respond predictably to therapies targeting IGF1 signaling.

To test their reasoning they conducted a second experiment by crossing mice carrying the prostate-specific IGF-1R knockout alleles with transgenic mice that develop spontaneous prostate cancer when p53 and select other genes are compromised. The results were as predicted: Prostate epithelial-specific deletion of IGF-1R facilitated the emergence of aggressive prostate cancer in the genetically-engineered tumor prone mice.

Published in the May 1 edition of Cancer Research, the study supports a critical role for IGF-1R signaling in prostate tumor development and identifies an important IGF-1R-dependent growth control mechanism, according to the authors. Title of the paper is “Conditional deletion of insulin-like growth factor-1 receptor in prostate epithelium.”

“If our predictions hold true, tumor cells with intact p53 may show the best response to therapy targeting the IGF-1R signal, however when p53 is not functioning normally, response to this therapy may not be as expected,” said Greenberg, the study’s corresponding author and a member of the Hutchinson Center’s Clinical Research Division.

Greenberg’s message to clinicians who administer IGF-R1 therapy: “We’re all hoping for good results but let’s proceed with caution.”

A search of the database for clinical trials registered with the National Cancer Institute found 18 trials in process that use therapies to inhibit IGF-R1. None of them include a tumor’s p53 status as a criterion for recruiting research participants, said Greenberg.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>