Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study raises questions about prostate cancer therapies targeting IGF-1

05.05.2008
Therapies under development to treat prostate cancer by inhibiting the ability of insulin-like growth factor (IGF-1) to activate its target receptor could have unexpected results especially if a major tumor suppressor gene – p53 – is already compromised, according to new research by investigators at Fred Hutchinson Cancer Research Center.

IGF-1 is a polypeptide hormone that can influence growth, differentiation and survival of cells expressing the type 1 receptor (IGF-1R). Past clinical, epidemiological and experimental studies have strongly implicated IGF-1 as a contributing factor in the natural history of prostate cancer. However, very little has been done to prove absolutely that the expression or activation of the IGF-1 signaling pathway at physiologically relevant levels is sufficient to cause a healthy prostate cell to become a cancer cell.

Norman Greenberg, Ph.D., and colleagues conducted a pair of experiments by manipulating gene expression directly in the epithelial compartment of the mouse prostate gland to better understand the role of IGF-1R. In contrast to studies that correlated elevated levels of IGF-1 with the risk of developing prostate cancer, Greenberg’s research showed that eliminating IGF-1R expression in an otherwise normal mouse prostate caused the cells to proliferate and become hyperplastic. Although persistent loss of IGF-1R expression ultimately induced cell stasis and death, both of these processes are regulated by the tumor suppressor gene p53 that is commonly mutated in human prostate cancers. Hence the researchers hypothesized that tumors with compromised p53 might not respond predictably to therapies targeting IGF1 signaling.

To test their reasoning they conducted a second experiment by crossing mice carrying the prostate-specific IGF-1R knockout alleles with transgenic mice that develop spontaneous prostate cancer when p53 and select other genes are compromised. The results were as predicted: Prostate epithelial-specific deletion of IGF-1R facilitated the emergence of aggressive prostate cancer in the genetically-engineered tumor prone mice.

Published in the May 1 edition of Cancer Research, the study supports a critical role for IGF-1R signaling in prostate tumor development and identifies an important IGF-1R-dependent growth control mechanism, according to the authors. Title of the paper is “Conditional deletion of insulin-like growth factor-1 receptor in prostate epithelium.”

“If our predictions hold true, tumor cells with intact p53 may show the best response to therapy targeting the IGF-1R signal, however when p53 is not functioning normally, response to this therapy may not be as expected,” said Greenberg, the study’s corresponding author and a member of the Hutchinson Center’s Clinical Research Division.

Greenberg’s message to clinicians who administer IGF-R1 therapy: “We’re all hoping for good results but let’s proceed with caution.”

A search of the database for clinical trials registered with the National Cancer Institute found 18 trials in process that use therapies to inhibit IGF-R1. None of them include a tumor’s p53 status as a criterion for recruiting research participants, said Greenberg.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>