Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly dose: Rensselaer heparin expert helps uncover source of lethal contamination

29.04.2008
The mysterious death of patients around the world following a routine dosage of the common blood thinner, heparin, sent researchers on a frantic search to uncover what could make the standard drug so toxic. A researcher at Rensselaer Polytechnic Institute was among a small group of scientists with the expertise and the high-tech equipment necessary to determine the source of the contamination.

Robert J. Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer, is part of an international team that recently announced it had uncovered the source of the deadly contamination. On April 23, the team led by researchers at the Massachusetts Institute of Technology (MIT), described the source in the journal Nature Biotechnology -- a complex carbohydrate named oversulfated chondroitin sulfate, which has a structure so similar to heparin it was nearly undetectable to less advanced technology.

"Days after the deaths were first linked to heparin, we had the drugs in our hands from the FDA and our nuclear magnetic resonator (NMR) was set into motion to break down the structure of the drug and determine what could possibly be the source of the contamination," Linhardt said. "Now that we know the most likely source of the contamination, we are developing much stronger monitoring systems to ensure that this type of contamination is detected before it reaches patients."

Although extremely close in chemical structure to heparin, the contaminant caused severe allergic reaction in many patients who were receiving routine treatment for kidney dialysis, heart surgery, and other common medical issues. The researchers' extremely detailed structural analysis of the drug, using technology such as the NMR, was able to detect the minute differences between the contaminated drug and a normal dosage of heparin. And while Linhardt and others are developing more sophisticated detection systems, Linhardt also is helping lead the race for a safer, man-made alternative to the traditional biologic heparin. Biological heparin is currently developed by purifying the scrapings of pig and cow intestines.

"This contamination is unfortunately a sign that the way we currently manufacture heparin is simply unsafe," he said. "Because we rely on animals, we open ourselves up for spreading prions and diseases like mad cow disease through these animals. And because most of the raw material is imported, we often can't be sure of exactly what we are getting."

Linhardt is helping lead the global race to develop a synthetic alternative to heparin that could help eliminate the potential for contamination and adverse affects of biologic heparin. His lab developed the first fully synthetic heparin in amounts large enough for human dosage in 2005, and he continues to work to get the product further tested and commercialized.

"A synthetic heparin is built using sugars and enzymes found in the human body," Linhardt said of his recipe for synthetic heparin. "So instead of taking pig intestines and trying to purify it over and over again to reduce it down to just heparin, we are building heparin from scratch with no foreign material present. This method ensures that we know exactly what is in the drug and have complete control over its ingredients."

The research published in Nature Biotechnology was led by Ram Sasisekharan at MIT and involved a multidisciplinary and global team of researchers, including scientists and engineers from the FDA, Momenta Pharmaceuticals of Cambridge, Mass., and the Istituto di Ricerche Chimiche e Biochimiche of Milan, Italy.

Linhardt and his team of researchers at Rensselaer, which includes postdoctoral, graduate, and undergraduate students, used the sophisticated NMR and other technologies in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS) to help uncover the source of the contamination.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

About the Rensselaer Center for Biotechnology and Interdisciplinary Studies

Ranked among the world's most advanced research facilities, the Rensselaer Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research. At the Center, faculty and students in diverse academic and research disciplines are crossing the divide between the life sciences and engineering to encourage discovery and innovation. Four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students to help create new technologies that will save and improve the lives of people around the world.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>