Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancers : What if their invasive power were "latent" from the beginning of their development?

14.04.2008
Why are some cancers more aggressive than others? This was the question explored by a number of doctors and Inserm research scientists at the Institut Curie when they studied the biological profile of a form of breast cancer.

The results were astounding: tumour aggressiveness seems to be determined from the very first tumour cells and the biological diversity observed in invasive cancers already exists in localised forms.

These results could make it possible to define subpopulations of localised cancers and adapt the treatment according to the associated risks.

But with this work published in the Clinical Cancer Research issue of 1st April, the question remains of the origin of tumour cell aggressiveness: if it does not arise from biological modifications formerly acquired by tumour cells, how is the invasive capacity triggered off?

There is not one breast cancer: there are many sorts, and treatment differs according to the state of evolution, location and cells from which it is propagated (see inset on "breast cancers").

15% to 20% of them are in situ canicular breast tumours: this localised cancer develops to the detriment of the epithelial cells of the galactophoric ducts, which convey the milk produced by the mammary gland. If it is not diagnosed in time, an in situ canicular breast carcinoma can invade the neighbouring tissues. Invasive canicular cancers represent 80% of all cases of invasive breast cancer.

Dr Anne Vincent-Salomon(1), a doctor/researcher at the Institut Curie working under Dr Olivier Delattre(2), Director of the "Genetics and biology of cancers" Inserm 830 Unit at the Institut Curie, has studied the biological profile of in situ canicular breast cancers. This work would not have been possible without the collaboration of the surgeons, anatomopathologists and radiotherapists of the Institut Curie Breast Cancer Unit headed by Dr Brigitte Sigal, nor without the help of biologists and biocomputer scientists from the Inserm/Institut Curie "Genetics and biology of cancers " Unit.

Drs Anne Vincent-Salomon and Olivier Delattre analysed the phenotype and genetic profile of 57 in situ canicular breast tumours, together with the gene expression – the transcriptome(3) – of 26 of these tumours. Now, these profiles at the localised stage are very similar to those observed with invasive in situ canicular breast cancers. Diversity, and in particular the invasive power of breast cancers, thus exists in the early stages.

Cancers characterised, for example, by a mutation of the TP53 gene or overexpression of HER2 receptors possess this alteration right from the first phases of their development. The classification – basal-like, luminal or ERBB2 (see inset on "breast cancers") – adopted to define invasive breast cancers and their treatment more clearly could thus be used with localised forms as well.

Another conclusion drawn from the work: since they are present from the very beginning of development, TP53 mutations or expression modifications in HER2 receptors are not those that trigger off the invasion of the cancers. Likewise for the alterations in the development genes that appear right at the start of the tumour's evolution. So how does a tumour acquire an aggressive character? If it does not arise from successive genetic modifications within tumour cells, could it be that a tumour's evolution depends on the genetic context in which it takes place?

Are there genetic specificities peculiar to the patient that influence the evolution of tumours? Maybe not everything is contained in the tumour cells alone…

(1) Dr Anne Vincent-Salomon is an anatomopathologist in the Tumour Biology Department at the Institut Curie. She undertook this work during her thesis carried out notably by means of an Inserm INTERFACE contract enabling her to devote her time to research while another doctor replaced her.

(2) Dr Olivier Delattre is the Inserm Research Director at the Institut Curie.

(3) The transcriptome is all the ARN messengers, the molecules serving as matrix for the synthesis of proteins from the expression of part of the genome of a cell tissue or type of cell.

celine giustranti | alfa
Further information:
http://clincancerres.aacrjournals.org/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>