Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancers : What if their invasive power were "latent" from the beginning of their development?

14.04.2008
Why are some cancers more aggressive than others? This was the question explored by a number of doctors and Inserm research scientists at the Institut Curie when they studied the biological profile of a form of breast cancer.

The results were astounding: tumour aggressiveness seems to be determined from the very first tumour cells and the biological diversity observed in invasive cancers already exists in localised forms.

These results could make it possible to define subpopulations of localised cancers and adapt the treatment according to the associated risks.

But with this work published in the Clinical Cancer Research issue of 1st April, the question remains of the origin of tumour cell aggressiveness: if it does not arise from biological modifications formerly acquired by tumour cells, how is the invasive capacity triggered off?

There is not one breast cancer: there are many sorts, and treatment differs according to the state of evolution, location and cells from which it is propagated (see inset on "breast cancers").

15% to 20% of them are in situ canicular breast tumours: this localised cancer develops to the detriment of the epithelial cells of the galactophoric ducts, which convey the milk produced by the mammary gland. If it is not diagnosed in time, an in situ canicular breast carcinoma can invade the neighbouring tissues. Invasive canicular cancers represent 80% of all cases of invasive breast cancer.

Dr Anne Vincent-Salomon(1), a doctor/researcher at the Institut Curie working under Dr Olivier Delattre(2), Director of the "Genetics and biology of cancers" Inserm 830 Unit at the Institut Curie, has studied the biological profile of in situ canicular breast cancers. This work would not have been possible without the collaboration of the surgeons, anatomopathologists and radiotherapists of the Institut Curie Breast Cancer Unit headed by Dr Brigitte Sigal, nor without the help of biologists and biocomputer scientists from the Inserm/Institut Curie "Genetics and biology of cancers " Unit.

Drs Anne Vincent-Salomon and Olivier Delattre analysed the phenotype and genetic profile of 57 in situ canicular breast tumours, together with the gene expression – the transcriptome(3) – of 26 of these tumours. Now, these profiles at the localised stage are very similar to those observed with invasive in situ canicular breast cancers. Diversity, and in particular the invasive power of breast cancers, thus exists in the early stages.

Cancers characterised, for example, by a mutation of the TP53 gene or overexpression of HER2 receptors possess this alteration right from the first phases of their development. The classification – basal-like, luminal or ERBB2 (see inset on "breast cancers") – adopted to define invasive breast cancers and their treatment more clearly could thus be used with localised forms as well.

Another conclusion drawn from the work: since they are present from the very beginning of development, TP53 mutations or expression modifications in HER2 receptors are not those that trigger off the invasion of the cancers. Likewise for the alterations in the development genes that appear right at the start of the tumour's evolution. So how does a tumour acquire an aggressive character? If it does not arise from successive genetic modifications within tumour cells, could it be that a tumour's evolution depends on the genetic context in which it takes place?

Are there genetic specificities peculiar to the patient that influence the evolution of tumours? Maybe not everything is contained in the tumour cells alone…

(1) Dr Anne Vincent-Salomon is an anatomopathologist in the Tumour Biology Department at the Institut Curie. She undertook this work during her thesis carried out notably by means of an Inserm INTERFACE contract enabling her to devote her time to research while another doctor replaced her.

(2) Dr Olivier Delattre is the Inserm Research Director at the Institut Curie.

(3) The transcriptome is all the ARN messengers, the molecules serving as matrix for the synthesis of proteins from the expression of part of the genome of a cell tissue or type of cell.

celine giustranti | alfa
Further information:
http://clincancerres.aacrjournals.org/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>