Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein discovered that keeps hemoglobin in balance

13.06.2002


Research at The Children’s Hospital of Philadelphia may advance treatment of the blood disease thalassemia



Hematology researchers at The Children’s Hospital of Philadelphia have discovered a gene and its associated protein that may have major implications for red blood cell formation, specifically for hemoglobin, which carries oxygen in red blood cells. Understanding how this protein functions may eventually lead to novel treatments for the hemoglobin-related blood disease, thalassemia.

Thalassemia is a group of related inherited disorders that together are the most common single-gene disease known. The most severe form of the disease, beta thalassemia major, affects 300,000 patients worldwide.


Thalassemia results from an imbalance between two proteins in hemoglobin, called alpha and beta globin. An excess of either type of protein is toxic, causing thalassemia symptoms including poor growth, fatigue, bone damage, or skin ulcers. The newly found protein, alpha hemoglobin stabilizing protein (AHSP), binds to free alpha globin and prevents it from forming a precipitate that damages red blood cells.

“AHSP acts as a chaperone molecule – a chemical that helps another protein to fold or unfold,” said Mitchell Weiss, M.D., Ph.D., a pediatric hematologist at The Children’s Hospital of Philadelphia, and senior author of the paper, published in the June 13 issue of Nature. “Here it makes free alpha globin stable and prevents its deleterious effects.”

Dr. Weiss’ team suspected that AHSP, by preventing free alpha hemoglobin from precipitating within red blood cells, protects the cells from injury. To test that hypothesis, the researchers developed knockout mice, animals genetically engineered to lack the gene that produces AHSP. Those mice showed blood abnormalities similar to those found in mice with thalassemia.

AHSP’s protective role could explain how some patients who carry the genetic trait for beta thalassemia have mild disease and few symptoms even though their bodies produce more alpha than beta globin. By binding to free alpha globin, AHSP may protect the body from a dangerous accumulation of that protein. However, if AHSP does not function properly, the excess alpha globin precipitation may change milder or intermediate thalassemia into more severe disease.

This current research suggests that if physicians can deliver AHSP or a similar agent to patients with thalassemia, they may produce a new treatment for the disease. Severe cases are now treated with frequent blood transfusions that carry their own serious complications, such as excess iron. “If we can reduce the buildup of free alpha globin we may be able to lower the dose of transfusion needed, and improve patients’ quality of life,” added Dr. Weiss.


In addition to Dr. Weiss, co-authors of the article are Anthony J. Kihm, Ph.D., Yi Kong, Wei Hong, Ph.D., J. Eric Russell, M.D., Susan Rouda, Kazuhiko Adachi, Ph.D., and Gerd A. Blobel, M.D., Ph. D., all of Children’s Hospital’s Division of Hematology, and M. Celeste Simon, Ph.D., of the Howard Hughes Medical Institute and the University of Pennsylvania. The research was funded by the Cooley’s Anemia Foundation, the Unico Foundation and the National Institutes of Health.

Founded in 1855 as the nation’s first pediatric hospital, The Children’s Hospital of Philadelphia is ranked today as the best pediatric hospital in the nation by a comprehensive Child magazine survey. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding.

John Ascenzi | EurekAlert

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>