Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein discovered that keeps hemoglobin in balance

13.06.2002


Research at The Children’s Hospital of Philadelphia may advance treatment of the blood disease thalassemia



Hematology researchers at The Children’s Hospital of Philadelphia have discovered a gene and its associated protein that may have major implications for red blood cell formation, specifically for hemoglobin, which carries oxygen in red blood cells. Understanding how this protein functions may eventually lead to novel treatments for the hemoglobin-related blood disease, thalassemia.

Thalassemia is a group of related inherited disorders that together are the most common single-gene disease known. The most severe form of the disease, beta thalassemia major, affects 300,000 patients worldwide.


Thalassemia results from an imbalance between two proteins in hemoglobin, called alpha and beta globin. An excess of either type of protein is toxic, causing thalassemia symptoms including poor growth, fatigue, bone damage, or skin ulcers. The newly found protein, alpha hemoglobin stabilizing protein (AHSP), binds to free alpha globin and prevents it from forming a precipitate that damages red blood cells.

“AHSP acts as a chaperone molecule – a chemical that helps another protein to fold or unfold,” said Mitchell Weiss, M.D., Ph.D., a pediatric hematologist at The Children’s Hospital of Philadelphia, and senior author of the paper, published in the June 13 issue of Nature. “Here it makes free alpha globin stable and prevents its deleterious effects.”

Dr. Weiss’ team suspected that AHSP, by preventing free alpha hemoglobin from precipitating within red blood cells, protects the cells from injury. To test that hypothesis, the researchers developed knockout mice, animals genetically engineered to lack the gene that produces AHSP. Those mice showed blood abnormalities similar to those found in mice with thalassemia.

AHSP’s protective role could explain how some patients who carry the genetic trait for beta thalassemia have mild disease and few symptoms even though their bodies produce more alpha than beta globin. By binding to free alpha globin, AHSP may protect the body from a dangerous accumulation of that protein. However, if AHSP does not function properly, the excess alpha globin precipitation may change milder or intermediate thalassemia into more severe disease.

This current research suggests that if physicians can deliver AHSP or a similar agent to patients with thalassemia, they may produce a new treatment for the disease. Severe cases are now treated with frequent blood transfusions that carry their own serious complications, such as excess iron. “If we can reduce the buildup of free alpha globin we may be able to lower the dose of transfusion needed, and improve patients’ quality of life,” added Dr. Weiss.


In addition to Dr. Weiss, co-authors of the article are Anthony J. Kihm, Ph.D., Yi Kong, Wei Hong, Ph.D., J. Eric Russell, M.D., Susan Rouda, Kazuhiko Adachi, Ph.D., and Gerd A. Blobel, M.D., Ph. D., all of Children’s Hospital’s Division of Hematology, and M. Celeste Simon, Ph.D., of the Howard Hughes Medical Institute and the University of Pennsylvania. The research was funded by the Cooley’s Anemia Foundation, the Unico Foundation and the National Institutes of Health.

Founded in 1855 as the nation’s first pediatric hospital, The Children’s Hospital of Philadelphia is ranked today as the best pediatric hospital in the nation by a comprehensive Child magazine survey. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding.

John Ascenzi | EurekAlert

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>