Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein discovered that keeps hemoglobin in balance

13.06.2002


Research at The Children’s Hospital of Philadelphia may advance treatment of the blood disease thalassemia



Hematology researchers at The Children’s Hospital of Philadelphia have discovered a gene and its associated protein that may have major implications for red blood cell formation, specifically for hemoglobin, which carries oxygen in red blood cells. Understanding how this protein functions may eventually lead to novel treatments for the hemoglobin-related blood disease, thalassemia.

Thalassemia is a group of related inherited disorders that together are the most common single-gene disease known. The most severe form of the disease, beta thalassemia major, affects 300,000 patients worldwide.


Thalassemia results from an imbalance between two proteins in hemoglobin, called alpha and beta globin. An excess of either type of protein is toxic, causing thalassemia symptoms including poor growth, fatigue, bone damage, or skin ulcers. The newly found protein, alpha hemoglobin stabilizing protein (AHSP), binds to free alpha globin and prevents it from forming a precipitate that damages red blood cells.

“AHSP acts as a chaperone molecule – a chemical that helps another protein to fold or unfold,” said Mitchell Weiss, M.D., Ph.D., a pediatric hematologist at The Children’s Hospital of Philadelphia, and senior author of the paper, published in the June 13 issue of Nature. “Here it makes free alpha globin stable and prevents its deleterious effects.”

Dr. Weiss’ team suspected that AHSP, by preventing free alpha hemoglobin from precipitating within red blood cells, protects the cells from injury. To test that hypothesis, the researchers developed knockout mice, animals genetically engineered to lack the gene that produces AHSP. Those mice showed blood abnormalities similar to those found in mice with thalassemia.

AHSP’s protective role could explain how some patients who carry the genetic trait for beta thalassemia have mild disease and few symptoms even though their bodies produce more alpha than beta globin. By binding to free alpha globin, AHSP may protect the body from a dangerous accumulation of that protein. However, if AHSP does not function properly, the excess alpha globin precipitation may change milder or intermediate thalassemia into more severe disease.

This current research suggests that if physicians can deliver AHSP or a similar agent to patients with thalassemia, they may produce a new treatment for the disease. Severe cases are now treated with frequent blood transfusions that carry their own serious complications, such as excess iron. “If we can reduce the buildup of free alpha globin we may be able to lower the dose of transfusion needed, and improve patients’ quality of life,” added Dr. Weiss.


In addition to Dr. Weiss, co-authors of the article are Anthony J. Kihm, Ph.D., Yi Kong, Wei Hong, Ph.D., J. Eric Russell, M.D., Susan Rouda, Kazuhiko Adachi, Ph.D., and Gerd A. Blobel, M.D., Ph. D., all of Children’s Hospital’s Division of Hematology, and M. Celeste Simon, Ph.D., of the Howard Hughes Medical Institute and the University of Pennsylvania. The research was funded by the Cooley’s Anemia Foundation, the Unico Foundation and the National Institutes of Health.

Founded in 1855 as the nation’s first pediatric hospital, The Children’s Hospital of Philadelphia is ranked today as the best pediatric hospital in the nation by a comprehensive Child magazine survey. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding.

John Ascenzi | EurekAlert

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>