Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failed blood supply can lead to loose chips in joints

14.03.2008
Osteochondrosis, or so-called “joint mice”, is a very common illness of Norwegian horses, although its cause is as yet unknown. A recent Ph. D. degree by veterinary surgeon Kristin Olstad of the equine clinic of the Norwegian School of Veterinary Science concluded that failure of blood supply to the developing joint cartilage can lead to the development of the disease.

Osteochondrosis affects both people and a range of domestic animals including horses, cows, pigs and dogs. The disease is especially common among Norwegian horses, in particular warmblood, and can lead to the development of loose flakes within the joint. These loose pieces can cause irritation, causing the joint to swell and the horse to become lame.

The disease is usually treated by surgical removal of the loose pieces, a procedure that is associated with risk to the horse and expense for the owner. Osteochondrosis is heritable, and affected horses can be denied certification for breeding programs if the disease is discovered on x-ray.

It was established in the 1970’s that osteochondrosis arises in the so-called growth cartilage. This is specialised tissue that is only found in the long bones of the skeleton before an animal attains its mature size.

For many years it was thought that cartilage is a non-vascular tissue, that is, without its own blood supply. Olstad and a research team from the equine clinic have now, however, discovered and described a rich blood supply running in so-called cartilage canals. This blood flow is, however, time-limited, and in the case of the hock joint, it disappears at around the age of two months. This explains to a large degree why the blood supply to the cartilage has been so poorly described previously.

Using a microscope, Olstad and the research group showed an association between the earliest stages of osteochondrosis and a failure of the blood flow to the growth cartilage.

The cartilage canals are repeatedly forced to cross the boundary between bone and cartilage. Studies have shown the blood vessels in these vascular channels failed at precisely the point where they crossed from solid bone over into the softer growth cartilage.

Olstad and the research team discovered that when the blood flow failed, the cartilage cells around the cartilage canals died, since they no longer received the oxygen and nourishment they depended on. Small areas of dead growth cartilage became isolated as weakened points under the joint surfaces. Upon loading, these areas could develop cracks and loosen, causing loose flakes within the joint.

Kristin Olstad B. V. Sc. , Cert. V.R,., M.R.C.V.S. defended her Philosophiae Doctor thesis with the title “Cartilage Canals in the Pathogenesis of Osteochondrosis in Horses”, at the Norwegian School of Veterinary Science, on February 29, 2008.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no/105/English/7899/Failed-blood-supply-can-lead-to-loose-chips-in-joints/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>