Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly developed anti-malarial medicine treats toxoplasmosis

05.03.2008
A new drug that will soon enter clinical trials for treatment of malaria also appears to be 10 times more effective than the key medicine in the current gold-standard treatment for toxoplasmosis, a disease caused by a related parasite that infects nearly one-third of all humans—more than two billion people worldwide.

In the March issue of PLoS Neglected Tropical Diseases, a research team based at the University of Chicago Medical Center shows that the drug, known as JPC-2056, is extremely effective against Toxoplasma gondii, the parasite that causes toxoplasmosis, without toxicity.

"JPC-2056 has the potential to replace the standard treatment of pyrimethamine and sulfadiazine," said infectious disease specialist Rima McLeod, professor of ophthalmology at the University of Chicago and senior author of the study. "The drug, taken by mouth, is easily absorbed, bioavailable, and relatively nontoxic. In tissue culture and in mice, it was rapidly effective, markedly reducing numbers of parasites within just a few days."

Untreated mice injected with the parasite "appeared ill," four days after the injection, the authors note, "with ruffled fur and hunched shoulders." Treated mice remained well.

"Studies in tissue culture found no evidence of the parasite or the plaques they produce 52 days after four days of treatment," said co-author Ernest Mui, a researcher in McLeod's laboratory.

"The absence of growth," the authors write, "indicates that this compound is 'cidal' and not merely 'static' for the active form of T. gondii.

The drug inhibits the action of an enzyme, dihydrofolate reductase (DHFR), produced by the family of parasites that includes those that cause toxoplasmosis and malaria. It is structurally distinct from the human DHFR.

"The drug's effect on the malaria and Toxoplasma enzymes is robust," said McLeod. "It has much less effect on the human enzyme."

The new drug was effective against all malaria parasites, even those with multiple mutations that make them resistant to other anti-folate medicines, suggesting that "this family of parasites, including not just Toxoplasma but also various malaria parasites, will not easily develop resistance," she said.

Toxoplasma infection is "probably the most common parasitic infection in the world, causing very significant disease in those who have immature immune systems or who are immune-compromised," McLeod said. "New medications are urgently needed."

The standard medicines to treat the infection can cause severe side effects and many patients become hypersensitive to them. There are no medicines that can eliminate certain latent stages of the parasite's life cycle. There is no vaccine.

T. gondii infects humans through three principal routes: a newly infected pregnant woman passing the infection to her fetus; consumption of undercooked, infected meat; and ingestion of T. gondii oocysts in food, through accidental contamination from cat litter.

"An infected cat can excrete up to 20 million oocysts over two weeks," McLeod said. "Even a single oocyst is infectious and they can remain infectious in water for up to six months and in warm moist soil for up to a year."

Congenital toxoplasmosis, which occurs in an estimated 1 per 5,000 births a year in the United States, can cause severe vision loss, brain damage and even death. The annual cost of caring for these children may exceed $1 billion.

Also at increased risk are people with compromised immune systems, such as those with cancer, autoimmune disease, AIDS or transplant recipients. Even people with normal immune systems can suffer major organ damage from chronic infections. Eye disease leading to loss of sight is caused both during the primary infection and as a result of infection transmitted from mother to child. Recent epidemics in Surinam and French Guiana have been lethal even for young healthy victims. Studies have also found an association between chronic brain infection with Toxoplasma and diseases such as schizophrenia and epilepsy, although cause-and-effect relationships have not been proven.

JPC-2056 was developed in the late 1980s by teams led by Wilbur Milhous and Dennis Kyle of the Walter Reed Army Institute for Research in Silver Spring Maryland (both now at the University of South Florida), and David Jacobus of Jacobus Pharmaceutical Company. The original version was quite toxic, but the researchers found ways to reduce the toxicity and developed an oral version of the drug. Clinical trials using JPC-2056 to treat malaria are scheduled to begin later this year.

This new class of medicine holds "considerable promise for significant advances in the treatment of toxoplasmosis, which damages the eye and the brain," said McLeod, "as well as malaria, which kills one million children each year."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>