Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precancerous Stem Cells Can Form Tumor Blood Vessels

20.02.2008
Tumors require a blood supply to grow, but how they acquire their network of blood vessels is poorly understood. A new study here shows that tumor blood vessels can develop from precancerous stem cells, a recently discovered type of cell that can either remain benign or become malignant.

Researchers say the findings provide new information about how tumors develop blood vessels, and why new drugs designed to block tumor blood-vessel growth are often less effective than expected.

The study by scientists at the Ohio State University Comprehensive Cancer Center and Department of Pathology is to be published Feb. 20 in the journal PLoS ONE. “These findings suggest that tumor blood vessels are derived mainly from tumor cells, with a smaller number coming from normal blood-vessel cells,” says principal investigator Jian-Xin Gao, assistant professor of pathology.

“This may explain why many anti-angiogenic drugs fail to block tumor growth.”

Gao notes that potential anti-angiogenic drugs are usually screened using normal blood-vessel cells, also called endothelial cells, or their progenitors.

“The screened drugs may be very good at blocking the formation of blood vessels made by normal endothelial cells, but have little effect on blood-vessel formation by precancerous stem cells or other blood-vessel-forming cancer cells,” Gao says. “Our findings suggest that screening of these agents should include precancerous stem cells.”

Normal stem cells are unspecialized cells that can give rise to other types of cells. Recent evidence suggests that tumors consist of a small number of cancerous stem cells, or cancer-propagating cells with some features of stem cells, and a large number of their malignant progeny.

Precancerous stem cells are thought to be cells that can remain noncancerous or progress to cancer, depending on subsequent environmental influences.

For this study, Gao and his colleagues used mouse precancerous stem cells grown in the laboratory and transplanted into immune-deficient mice. The researchers removed the resulting tumors from the mice and, using tests for various molecular markers, observed that the tumor blood vessels were largely derived from precancerous stem cells.

“The tumor blood-vessel cells were abnormal and highly variable in appearance compared with normal cells,” Gao says.

The precancerous stem cells also produced similar levels of substances that stimulate blood-vessel growth (i.e., angiogenic factors), but they were much more potent in forming new blood vessels and larger tumor masses compared with tumors grown from typical tumor cells.

The researchers examined new blood vessel formation in human tumors transplanted into mice, and observed changes similar to those previously seen in the mouse tumors.

Lastly, the researchers examined the appearance of blood vessels in human cervical and breast tumors and observed that the blood-vessel cells displayed similar abnormalities and aberrant patterns of molecular markers.

“This suggests that the ability of these tumors to form blood vessels is likely linked to precancerous stem cells or other blood-vessel-forming tumor cells,” Gao says.

Citation: Shen R, Ye Y, Chen L, Yan Q, Barsky SH, et al (2008) Precancerous Stem Cells Can Serve As Tumor Vasculogenic Progenitors. PLoS ONE 3(2): e1652.doi:10.1371/journal.pone.0001652

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001652
http://www.plosone.org

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>