Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imitating monkey’s ‘jumping genes’ could lead to new treatments for HIV

19.02.2008
UCL (University College London) scientists have taken a significant step in understanding how retroviruses such as HIV can move between species and the biological mechanisms behind the ‘jumping genes’ which make some monkeys immune. They will now use this knowledge to develop a gene therapy treatment for HIV/AIDS in humans.

The international team of researchers, coordinated by Professor Greg Towers, UCL Infection and Immunity, and funded by the Wellcome Trust, have identified a combination of genes in a species of monkey that protects against retroviruses – a particularly opportunistic family of viruses that can integrate into the host’s genome and replicate as part of the cell’s DNA. The team’s findings are published today in Proceedings of the National Academy of Sciences (PNAS).

Professor Towers explained: “HIV causes AIDS and affects around 40 million people worldwide. Research has shown that HIV entered the human population from a chimpanzee retrovirus called SIV early in the 20th century. In order for a virus to successfully cross the species barrier and jump into a new species, it first has to bypass the new host's innate immune system, mediated by a combination of genes and proteins. One such gene, called TRIM5, has been shown to protect certain species from retroviruses – but unfortunately the human TRIM5 gene does not protect against HIV infection.”

The team found that a species of Asian monkey called Rhesus Macaques have a sophisticated ‘antiviral arsenal’ that can protect them against retroviruses. By closely examining TRIM5 in this species, they demonstrate that in some monkeys another gene called Cyclophilin has been joined to the TRIM5 gene, generating a TRIMCyp fusion.

Dr Sam Wilson, the paper’s first author, said: “Cyclophilin is very good at grabbing viruses as they enter cells. By fusing Cyclophilin to TRIM5, a gene is made that is good at grabbing viruses and good at destroying them.

This is the second time that this fusion has been identified – a TRIMCyp gene also exists in South American Owl Monkeys and, until now, this was thought to be an evolutionary one-off.

“This new research shows that a TRIMCyp has evolved independently in two separate species – it's like lightening has struck twice. It’s a remarkable example of convergent evolution, where organisms independently evolve similar traits as a result of having to adapt to similar environments. It also highlights the evolutionary selection pressure that viruses like HIV can apply.”

Professor Greg Towers explained further: “The discovery is a compelling example of how ‘jumping genes’ can shuffle an organism’s genetic makeup, generating useful new genes, and it is an exciting possibility for novel treatments for HIV/AIDS.

“About 25 per cent of Rhesus Macaques have the TRIM5 and a TRIMCyp gene, greatly expanding their antiviral arsenal. The others have an immunity, based around TRIM5, that protects them against a different combination of viruses. The gene seems to be evolving to protect the individual species from a range of different virus sequences.”

Professor Towers and his team now aim to develop humanised TRIMCyp that blocks HIV infection by artificially fusing human Cyclophilin and human TRIM5. Professor Towers said: “We can then introduce the TRIMCyp into stem cells, using gene therapy technologies, and the stem cells could repopulate the patient with blood cells that are immune to HIV. This work, already underway, could offer a real possibility of novel treatments for HIV/AIDS."

Ruth Metcalfe | alfa
Further information:
http://www.wellcome.ac.uk
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>