Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imitating monkey’s ‘jumping genes’ could lead to new treatments for HIV

19.02.2008
UCL (University College London) scientists have taken a significant step in understanding how retroviruses such as HIV can move between species and the biological mechanisms behind the ‘jumping genes’ which make some monkeys immune. They will now use this knowledge to develop a gene therapy treatment for HIV/AIDS in humans.

The international team of researchers, coordinated by Professor Greg Towers, UCL Infection and Immunity, and funded by the Wellcome Trust, have identified a combination of genes in a species of monkey that protects against retroviruses – a particularly opportunistic family of viruses that can integrate into the host’s genome and replicate as part of the cell’s DNA. The team’s findings are published today in Proceedings of the National Academy of Sciences (PNAS).

Professor Towers explained: “HIV causes AIDS and affects around 40 million people worldwide. Research has shown that HIV entered the human population from a chimpanzee retrovirus called SIV early in the 20th century. In order for a virus to successfully cross the species barrier and jump into a new species, it first has to bypass the new host's innate immune system, mediated by a combination of genes and proteins. One such gene, called TRIM5, has been shown to protect certain species from retroviruses – but unfortunately the human TRIM5 gene does not protect against HIV infection.”

The team found that a species of Asian monkey called Rhesus Macaques have a sophisticated ‘antiviral arsenal’ that can protect them against retroviruses. By closely examining TRIM5 in this species, they demonstrate that in some monkeys another gene called Cyclophilin has been joined to the TRIM5 gene, generating a TRIMCyp fusion.

Dr Sam Wilson, the paper’s first author, said: “Cyclophilin is very good at grabbing viruses as they enter cells. By fusing Cyclophilin to TRIM5, a gene is made that is good at grabbing viruses and good at destroying them.

This is the second time that this fusion has been identified – a TRIMCyp gene also exists in South American Owl Monkeys and, until now, this was thought to be an evolutionary one-off.

“This new research shows that a TRIMCyp has evolved independently in two separate species – it's like lightening has struck twice. It’s a remarkable example of convergent evolution, where organisms independently evolve similar traits as a result of having to adapt to similar environments. It also highlights the evolutionary selection pressure that viruses like HIV can apply.”

Professor Greg Towers explained further: “The discovery is a compelling example of how ‘jumping genes’ can shuffle an organism’s genetic makeup, generating useful new genes, and it is an exciting possibility for novel treatments for HIV/AIDS.

“About 25 per cent of Rhesus Macaques have the TRIM5 and a TRIMCyp gene, greatly expanding their antiviral arsenal. The others have an immunity, based around TRIM5, that protects them against a different combination of viruses. The gene seems to be evolving to protect the individual species from a range of different virus sequences.”

Professor Towers and his team now aim to develop humanised TRIMCyp that blocks HIV infection by artificially fusing human Cyclophilin and human TRIM5. Professor Towers said: “We can then introduce the TRIMCyp into stem cells, using gene therapy technologies, and the stem cells could repopulate the patient with blood cells that are immune to HIV. This work, already underway, could offer a real possibility of novel treatments for HIV/AIDS."

Ruth Metcalfe | alfa
Further information:
http://www.wellcome.ac.uk
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>