Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imitating monkey’s ‘jumping genes’ could lead to new treatments for HIV

19.02.2008
UCL (University College London) scientists have taken a significant step in understanding how retroviruses such as HIV can move between species and the biological mechanisms behind the ‘jumping genes’ which make some monkeys immune. They will now use this knowledge to develop a gene therapy treatment for HIV/AIDS in humans.

The international team of researchers, coordinated by Professor Greg Towers, UCL Infection and Immunity, and funded by the Wellcome Trust, have identified a combination of genes in a species of monkey that protects against retroviruses – a particularly opportunistic family of viruses that can integrate into the host’s genome and replicate as part of the cell’s DNA. The team’s findings are published today in Proceedings of the National Academy of Sciences (PNAS).

Professor Towers explained: “HIV causes AIDS and affects around 40 million people worldwide. Research has shown that HIV entered the human population from a chimpanzee retrovirus called SIV early in the 20th century. In order for a virus to successfully cross the species barrier and jump into a new species, it first has to bypass the new host's innate immune system, mediated by a combination of genes and proteins. One such gene, called TRIM5, has been shown to protect certain species from retroviruses – but unfortunately the human TRIM5 gene does not protect against HIV infection.”

The team found that a species of Asian monkey called Rhesus Macaques have a sophisticated ‘antiviral arsenal’ that can protect them against retroviruses. By closely examining TRIM5 in this species, they demonstrate that in some monkeys another gene called Cyclophilin has been joined to the TRIM5 gene, generating a TRIMCyp fusion.

Dr Sam Wilson, the paper’s first author, said: “Cyclophilin is very good at grabbing viruses as they enter cells. By fusing Cyclophilin to TRIM5, a gene is made that is good at grabbing viruses and good at destroying them.

This is the second time that this fusion has been identified – a TRIMCyp gene also exists in South American Owl Monkeys and, until now, this was thought to be an evolutionary one-off.

“This new research shows that a TRIMCyp has evolved independently in two separate species – it's like lightening has struck twice. It’s a remarkable example of convergent evolution, where organisms independently evolve similar traits as a result of having to adapt to similar environments. It also highlights the evolutionary selection pressure that viruses like HIV can apply.”

Professor Greg Towers explained further: “The discovery is a compelling example of how ‘jumping genes’ can shuffle an organism’s genetic makeup, generating useful new genes, and it is an exciting possibility for novel treatments for HIV/AIDS.

“About 25 per cent of Rhesus Macaques have the TRIM5 and a TRIMCyp gene, greatly expanding their antiviral arsenal. The others have an immunity, based around TRIM5, that protects them against a different combination of viruses. The gene seems to be evolving to protect the individual species from a range of different virus sequences.”

Professor Towers and his team now aim to develop humanised TRIMCyp that blocks HIV infection by artificially fusing human Cyclophilin and human TRIM5. Professor Towers said: “We can then introduce the TRIMCyp into stem cells, using gene therapy technologies, and the stem cells could repopulate the patient with blood cells that are immune to HIV. This work, already underway, could offer a real possibility of novel treatments for HIV/AIDS."

Ruth Metcalfe | alfa
Further information:
http://www.wellcome.ac.uk
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>