Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swansea research to develop a breath test for cancer and diabetes

13.02.2008
Researchers at Swansea University are using state-of-the-art equipment to develop a breath test for diagnosing diseases including diabetes and cancer.

Dr Masood Yousef is a senior research assistant in the Welsh Centre for Printing and Coating, which is housed within the University’s School of Engineering.

He is using GCMS-TD (gas chromatography, mass spectrometry and thermal desorption) technology to analyse the concentrations of volatile organic compounds (VOCs) in breath.

Dr Yousef said: “Studies have shown that high concentrations of certain VOCs in breath can correlate with disease. For example, the odour of ‘pear drops’ esters and acetone in relation to diabetes, ammonia in relation to hepatitis, and dimethyl sulphide to cirrhosis. There are also certain compounds that seem to mark out particular types of cancer.

“If unique markers for specific diseases can be recognised earlier than traditional techniques, then there is immense potential to revolutionise early disease diagnosis before any symptoms have developed, and without the need for invasive procedures.”

The system works by analysing all the component chemicals and compounds that make up a patient’s breath. The GCMS-TD creates a breath profile, which allows scientists to identify volatile organic compounds that may signify the presence of disease.

Diagnostic techniques based on exhaled breath are much less developed than traditional blood or urine analysis techniques, and are not widely utilised in clinical practice. Such techniques have also previously been seen as crude, subjective and unreliable.

However, due to improved analytical methodology, volatile marker-based diagnostics offers new potential in the rapid diagnosis and monitoring of illnesses.

Dr Yousef believes that the breath test will provide a more convenient and rapid method for diagnosing serious diseases than blood or urine analysis, and will require minimal medical intervention.

He said: “Breath samples are much easier to collect than blood and urine, for the patient as much as for the person collecting the sample. They can be collected anywhere by people with no medical training, and there are no associated biohazard risks.

“Overall, the procedure is likely to be much more cost effective than conventional methods, potentially saving the NHS a great deal of time and money.”

It is hoped that the research will lead to the development of simple diagnostic tools such as test strips that give positive results for specific illness markers, thereby reducing the cost and level of expertise for diagnosis.

Dr Timothy Claypole, Director of the Welsh Centre for Printing and Coating, said: “Swansea University is undoubtedly taking a lead in the use of GCMS-TD to identify unique biomarkers in breath profiles.

“The work that we are doing now could well lead to the use of breath tests in routine medical examinations, long before patients show any physical symptoms. Ultimately, this technology will save lives.”

The GCMS-TD equipment has been funded by a grant from the Welsh Assembly Government Knowledge Exploitation Fund. It was originally used to research the level of solvents and other VOCs inhaled by operators of printing machinery.

Bethan Evans | alfa
Further information:
http://www.swansea.ac.uk

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>