Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Polymer gel prevents skin grafts from shrinking

A gel that could prevent the painful and disfiguring contractions of skin grafts used to treat burns has been developed by British scientists.

When skin is irreparably damaged by burns, skin taken from other areas of the patient’s body – or created by tissue engineering – is grafted onto the burned area. Although grafts often heal successfully, the skin shrinks significantly in nearly a third of patients. The process is painful and disabling, and particularly common in children.

Karima Bertal and colleagues at the University of Sheffield have now developed an enzyme-inhibiting drug which can halve this contraction, and loaded it into a biocompatible polymer gel to smear onto the graft. Bertal presented the group’s preliminary results at the Royal Society of Chemistry’s Biomaterials conference in Manchester, UK, earlier this month.

Sheila MacNeil, the scientist who leads the research, told Chemistry World that currently the only accepted treatment for graft contraction is to have the patient wear pressure garments – extremely tight clothing that pushes down on the dermis to prevent it forming bumps of contracted tissue.

Her research team found that an enzyme called lysyl oxidase is involved in causing the graft contraction, as it ties together collagen fibres in the deep dermal layer of the skin. Then they identified a compound that inhibits the enzyme, called 3-aminopropionitrile, and combined it with a biocompatible polymer gel invented by chemist Steve Armes, also at Sheffield.

Tests of the drug on human skin samples were successful: ‘The control grafts contract to about 60 per cent of their original size, but [when the drug is applied] they only contract down to 80 per cent,’ Bertal told Chemistry World.

The gel also works as they hoped: ‘Our polymer gel is well tolerated by the skin and releases the drug in a controlled manner over about 48 hours,’ she said.

The team has now started testing the drug-gel combination itself on human skin samples, and early results looks promising, said MacNeil. ‘If they’re successful, we would like to move into the clinic,’ she said.

Brian Emsley | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>