Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Nature’ – new findings in pain research published

21.01.2008
A step forward in targeted pain therapy

Our bodies sense painful stimuli through certain receptors located in the skin, in joints and many internal organs. Specialized nerve fibers relay these signals coming from the periphery to the brain, where pain becomes conscious. “The spinal cord is placed between these structures as kind of a pain filter”, says Hanns Ulrich Zeilhofer, Professor at the Institute of Pharmaceutical Sciences at ETH Zurich and at the Institute of Pharmacology and Toxicology of the University of Zurich.

That filter assures that pain is not evoked by everyday stimuli like light touch. This is accomplished by inhibitory nerve cells located in the spinal dorsal horn that release the messenger molecule-amino butyric acid (GABA) at specialized contacts between neighboring nerve cells, so-called synapses. GABA then activates chloride channels on those neighboring cells which relay the pain signals to the brain.

Activating pain inhibiting factors

In patients with chronic inflammatory diseases, such as rheumatoid arthritis or after nerve damage, for example following injuries, the pain inhibiting action of GABA becomes severely compromised. Pain signals are then conducted to the brain nearly unfiltered. Benzodiazepines, such as the sedative drug Valium®, which enhance the action of GABA, alleviate chronic pain when they are applied directly to the spinal cord via an injection into the spinal canal. In practice, however, such injections can only be done in very selected cases. More often benzodiazepines are administered systemically, such as with tablets. In this instance, the benzodiazepines not only act in the spinal cord but also in the brain where they can have undesired, sometimes deleterious, effects on pain patients. The drugs cause sedation, impair memory, and can even lead to addiction. In addition, during prolonged treatment their effect often fades with time. Classic benzodiazepines should therefore be avoided in chronic pain patients.

GABAA receptors as pain targets

It had been acknowledged for some time that GABA serves important functions in pain control. That benzodiazepines act on at least four different subtypes of GABA receptors was also known. Nonetheless, these receptors were largely neglected as potential targets for pain treatment.

The research team led by Ulrich Zeilhofer used genetically altered mice in experiments to target the GABA receptors that control spinal pain relay. They first induced a slight inflammation in one hind paw or irritated the sciatic nerve to induce pain. A few days later the mice received an injection of a benzodiazepine close to the spinal cord. Experiments with the mice allowed the researchers to identify two subtypes of GABAA receptors which mediate spinal pain control.

A challenge for drug design

For experiments with animals, drugs with the proposed receptor specificity are already available. Such experiments have confirmed that the pharmacological enhancement of spinal GABA receptor function inhibits the relay of pain signals to the brain. Further studies have also shown that these compounds did not lose their analgesic effects during prolonged treatment and did not lead to addiction.

Successful design of a drug that targets only those two subtypes of GABA re-ceptors would be a big step forward in pain therapy. Chronic pain could be treated specifically and with fewer side effects. “The challenge is now for pharmaceutical companies to develop drugs that specifically target these receptors in humans”, says Zeilhofer.

Roman Klingler | alfa
Further information:
http://www.cc.ethz.ch/media/picturelibrary/news/gaba

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>