Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Nature’ – new findings in pain research published

21.01.2008
A step forward in targeted pain therapy

Our bodies sense painful stimuli through certain receptors located in the skin, in joints and many internal organs. Specialized nerve fibers relay these signals coming from the periphery to the brain, where pain becomes conscious. “The spinal cord is placed between these structures as kind of a pain filter”, says Hanns Ulrich Zeilhofer, Professor at the Institute of Pharmaceutical Sciences at ETH Zurich and at the Institute of Pharmacology and Toxicology of the University of Zurich.

That filter assures that pain is not evoked by everyday stimuli like light touch. This is accomplished by inhibitory nerve cells located in the spinal dorsal horn that release the messenger molecule-amino butyric acid (GABA) at specialized contacts between neighboring nerve cells, so-called synapses. GABA then activates chloride channels on those neighboring cells which relay the pain signals to the brain.

Activating pain inhibiting factors

In patients with chronic inflammatory diseases, such as rheumatoid arthritis or after nerve damage, for example following injuries, the pain inhibiting action of GABA becomes severely compromised. Pain signals are then conducted to the brain nearly unfiltered. Benzodiazepines, such as the sedative drug Valium®, which enhance the action of GABA, alleviate chronic pain when they are applied directly to the spinal cord via an injection into the spinal canal. In practice, however, such injections can only be done in very selected cases. More often benzodiazepines are administered systemically, such as with tablets. In this instance, the benzodiazepines not only act in the spinal cord but also in the brain where they can have undesired, sometimes deleterious, effects on pain patients. The drugs cause sedation, impair memory, and can even lead to addiction. In addition, during prolonged treatment their effect often fades with time. Classic benzodiazepines should therefore be avoided in chronic pain patients.

GABAA receptors as pain targets

It had been acknowledged for some time that GABA serves important functions in pain control. That benzodiazepines act on at least four different subtypes of GABA receptors was also known. Nonetheless, these receptors were largely neglected as potential targets for pain treatment.

The research team led by Ulrich Zeilhofer used genetically altered mice in experiments to target the GABA receptors that control spinal pain relay. They first induced a slight inflammation in one hind paw or irritated the sciatic nerve to induce pain. A few days later the mice received an injection of a benzodiazepine close to the spinal cord. Experiments with the mice allowed the researchers to identify two subtypes of GABAA receptors which mediate spinal pain control.

A challenge for drug design

For experiments with animals, drugs with the proposed receptor specificity are already available. Such experiments have confirmed that the pharmacological enhancement of spinal GABA receptor function inhibits the relay of pain signals to the brain. Further studies have also shown that these compounds did not lose their analgesic effects during prolonged treatment and did not lead to addiction.

Successful design of a drug that targets only those two subtypes of GABA re-ceptors would be a big step forward in pain therapy. Chronic pain could be treated specifically and with fewer side effects. “The challenge is now for pharmaceutical companies to develop drugs that specifically target these receptors in humans”, says Zeilhofer.

Roman Klingler | alfa
Further information:
http://www.cc.ethz.ch/media/picturelibrary/news/gaba

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>