Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment Mechanisms for Schizophrenia

09.01.2008
The field of schizophrenia research has come alive with many exciting new potential approaches to treatment. From the introduction of chlorpromazine to the current day, all treatments approved by the U.S. Food and Drug Administration have had, at their core, a single treatment mechanism, the blockade of the dopamine D2 receptor.

The introduction of clozapine in the 1980’s suggested a potential that other brain targets might complement the blockade of dopamine D2 receptors to treat symptoms that failed to respond to the “typical” antipsychotics. We are now entering an age where new treatments are being rationally developed within the context of translational neuroscience, i.e., the steps whereby basic molecular neuroscience leads to fundamental new mechanisms that can be tested in animal and human laboratory-based research that, in turn, leads to tests of new medications in our clinics. The January 1st issue of Biological Psychiatry includes encouraging new research related to three new treatment approaches.

In the first study, Olszewski and colleagues tested a novel drug that inhibits the breakdown of the transmitter N-acetylaspartylglutamate (NAAG), which activates a receptor that reduces schizophrenia-like behaviors in some animal models. Their findings indicate that this drug is effective in an animal model of schizophrenia. Joseph H. Neale, Ph.D., lead author on this project, comments, “While treating patients with receptor agonists can be highly effective therapy, drugs that increase the action of the transmitter that activates the same receptor have traditionally been very effective with fewer side effects than chronic agonist treatment.” He adds, “These data support the conclusion that NAAG peptidase inhibitors represent a breakthrough in the discovery of a completely novel means of adjunct therapy for schizophrenia that is analogous to the use of SSRIs [selective serotonin reuptake inhibitors] for the treatment of depression."

In the second article, Hashimoto and colleagues demonstrated that repeated administration of the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) decreased the density of ?7 nicotinic receptors (?7 nAChRs) in the mouse brain, and that the novel ?7 nAChR agonist SSR180711 could ameliorate PCP-induced cognitive deficits in mice. According to Kenji Hashimoto, Ph.D., head author for this study, the impetus for this study came from the fact that “accumulating evidence suggests that ?7 nicotinic receptors, a subtype of nicotinic receptors, are a most attractive target for novel therapeutic drugs of neuropsychiatric diseases including schizophrenia and Alzheimer’s disease. Behavioral abnormalities in animals after repeated administration of the NMDA receptor antagonist phencyclidine (PCP) have been used an animal model of schizophrenia.” These findings suggest that ?7 nAChR agonists including SSR180711 could be potential therapeutic drugs for cognitive deficits in schizophrenic patients.

In the third investigation, Semenova and colleagues show that a recently discovered brain receptor for serotonin (5-HT7) might be of importance for understanding certain aspects of schizophrenia. Their study focused on sensory input processing, which is often impaired in schizophrenia, and finds that blockade of this particular serotonin receptor in mice alleviates this impairment. Peter B. Hedlund, M.D., Ph.D., senior author, notes: “Certain pharmaceuticals used to treat schizophrenia interact with this receptor. Our results indicate that especially so-called atypical antipsychotics may promiscuously exert some of their beneficial effects through the 5-HT7 receptor. Further exploration of this receptor as a treatment target may lead to more specific and better medications for disorders such as schizophrenia.”

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, “It is very clear that very few tested medications actually become new treatments. However, the embedding of clinical research within the framework of translational neuroscience increases the likelihood that one or another of these mechanisms might someday emerge as a treatment for schizophrenia.” Dr. Krystal concludes, “Since we have so few mechanistically distinct approaches for the pharmacotherapy of schizophrenia, the possibility of the emergence of new treatment mechanisms is certainly a source of hope.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>