Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment Mechanisms for Schizophrenia

09.01.2008
The field of schizophrenia research has come alive with many exciting new potential approaches to treatment. From the introduction of chlorpromazine to the current day, all treatments approved by the U.S. Food and Drug Administration have had, at their core, a single treatment mechanism, the blockade of the dopamine D2 receptor.

The introduction of clozapine in the 1980’s suggested a potential that other brain targets might complement the blockade of dopamine D2 receptors to treat symptoms that failed to respond to the “typical” antipsychotics. We are now entering an age where new treatments are being rationally developed within the context of translational neuroscience, i.e., the steps whereby basic molecular neuroscience leads to fundamental new mechanisms that can be tested in animal and human laboratory-based research that, in turn, leads to tests of new medications in our clinics. The January 1st issue of Biological Psychiatry includes encouraging new research related to three new treatment approaches.

In the first study, Olszewski and colleagues tested a novel drug that inhibits the breakdown of the transmitter N-acetylaspartylglutamate (NAAG), which activates a receptor that reduces schizophrenia-like behaviors in some animal models. Their findings indicate that this drug is effective in an animal model of schizophrenia. Joseph H. Neale, Ph.D., lead author on this project, comments, “While treating patients with receptor agonists can be highly effective therapy, drugs that increase the action of the transmitter that activates the same receptor have traditionally been very effective with fewer side effects than chronic agonist treatment.” He adds, “These data support the conclusion that NAAG peptidase inhibitors represent a breakthrough in the discovery of a completely novel means of adjunct therapy for schizophrenia that is analogous to the use of SSRIs [selective serotonin reuptake inhibitors] for the treatment of depression."

In the second article, Hashimoto and colleagues demonstrated that repeated administration of the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) decreased the density of ?7 nicotinic receptors (?7 nAChRs) in the mouse brain, and that the novel ?7 nAChR agonist SSR180711 could ameliorate PCP-induced cognitive deficits in mice. According to Kenji Hashimoto, Ph.D., head author for this study, the impetus for this study came from the fact that “accumulating evidence suggests that ?7 nicotinic receptors, a subtype of nicotinic receptors, are a most attractive target for novel therapeutic drugs of neuropsychiatric diseases including schizophrenia and Alzheimer’s disease. Behavioral abnormalities in animals after repeated administration of the NMDA receptor antagonist phencyclidine (PCP) have been used an animal model of schizophrenia.” These findings suggest that ?7 nAChR agonists including SSR180711 could be potential therapeutic drugs for cognitive deficits in schizophrenic patients.

In the third investigation, Semenova and colleagues show that a recently discovered brain receptor for serotonin (5-HT7) might be of importance for understanding certain aspects of schizophrenia. Their study focused on sensory input processing, which is often impaired in schizophrenia, and finds that blockade of this particular serotonin receptor in mice alleviates this impairment. Peter B. Hedlund, M.D., Ph.D., senior author, notes: “Certain pharmaceuticals used to treat schizophrenia interact with this receptor. Our results indicate that especially so-called atypical antipsychotics may promiscuously exert some of their beneficial effects through the 5-HT7 receptor. Further exploration of this receptor as a treatment target may lead to more specific and better medications for disorders such as schizophrenia.”

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, “It is very clear that very few tested medications actually become new treatments. However, the embedding of clinical research within the framework of translational neuroscience increases the likelihood that one or another of these mechanisms might someday emerge as a treatment for schizophrenia.” Dr. Krystal concludes, “Since we have so few mechanistically distinct approaches for the pharmacotherapy of schizophrenia, the possibility of the emergence of new treatment mechanisms is certainly a source of hope.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>