Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins do not predict outcome of herceptin treatment in HER2-positive breast cancer

09.12.2011
Precisely quantifying the amount of three different HER growth proteins, along with several other proteins believed linked to breast cancer, did not predict a patient's outcome after treatment for HER2-Positive Breast Cancer with Herceptin, say Mayo Clinic researchers. HER2-positive breast cancer gets its name from a protein called human epidermal growth factor receptor 2 that promotes cancer cell growth.

The finding, presented at the 2011 CTRC-AACR San Antonio Breast Cancer Symposium, represents a disappointment to oncologists who had hoped to find distinct biomarkers beyond standard HER2 testing that could help them gauge how well Herceptin will work for patients.

"This study debunks the hopeful notion, strongly felt in the breast cancer community, that measuring levels of a number of different proteins in the HER2 family could help oncologists better tailor their use of Herceptin," says the study's senior investigator, Edith Perez, M.D., director of Mayo Clinic's Breast Program in Florida.

"Improving our ability to predict the benefit of Herceptin treatment beyond testing for HER2 protein and genes remains an important goal, but we are not there yet," she says.

... more about:
»Cancer »HER2 »HER2-positive »HER3 »Herceptin »Protein »breast

Currently, patients are considered eligible for Herceptin if a pathologist estimates that at least 10 percent of their tumor samples test positive for HER2 growth proteins. However, the test is relatively subjective, based on a HER2 stain on a slide of tumor tissue. While the test can predict the outcome of Herceptin treatment, which shuts down the HER2 growth receptor for some patients, it cannot do so for all patients, Dr. Perez says.

Researchers used a tool that precisely measures the amount of a protein expressed in a cancer sample. According to Dr. Perez, this study was the first to meticulously measure protein levels, including HER2, HER3, HER4, EGFR (epidermal growth factor receptor), ER (estrogen receptor), and PTEN (a tumor suppressor gene) in almost 1,400 tumor biopsies.

Many researchers thought that analysis of the HER3 protein might be a good predictive marker because HER2 and HER3 interact together to promote cancer growth, Dr. Perez says.

"A biopsy could have 80 percent HER3 protein, and it wouldn't be any different in terms of a patient's outcome from Herceptin use than a tumor that had 5 percent HER3 protein," she says.

The next step to finding predictive biomarkers showing a benefit to Herceptin use will be to look at multi-gene profiles, not single biomarkers, Dr. Perez says.

The study was led by Dr. Perez and her team at Mayo Clinic with the collaboration of David Rimm, M.D., Ph.D., at Yale School of Medicine, and investigators who enrolled patients in the N9831 trial throughout the United States. The work was funded by the National Institutes of Health and the Breast Cancer Research Foundation. The original N9831 patient study was partially supported by the National Cancer Institute and Genentech.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research, and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.

Joe Dangor | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Cancer HER2 HER2-positive HER3 Herceptin Protein breast

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>