Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Must Exist in Specific Brain Cells to Prevent Diet-Induced Obesity

07.07.2010
A protein found in cells throughout the body must be present in a specific set of neurons in the brain to prevent weight gain after chronic feeding on high-calorie meals, new findings from UT Southwestern Medical Center researchers suggest.

Nicknamed the “longevity” protein because of its apparent role in mediating the effects of dietary restriction on life span, SIRT1 has been studied as a potential target for anti-aging drugs. Prior research also has shown that this metabolic sensor protein in peripheral tissues plays an important role in regulating metabolism, but its physiological relevance in brain neurons remained unclear.

“This is the first study to show that SIRT1 in hypothalamic neurons, specifically POMC neurons, is required for preventing diet-induced obesity and maintaining normal body weight,” said Dr. Roberto Coppari, assistant professor of internal medicine at UT Southwestern and senior author of the mouse study, available online and in the July 7 issue of Cell Metabolism.

POMC, or pro-opiomelanocortin, neurons are found in the hypothalamus region of the brain and are known to play an important role in suppressing appetite and inducing weight loss. There are about 3,000 POMC neurons in a mouse brain.

The researchers genetically engineered mice to lack SIRT1 only in these specific hypothalamic neurons. They found that when fed a high-calorie diet, the mice lacking SIRT1 in POMC neurons gained more weight and were generally more susceptible to diet-induced obesity than those with the metabolic sensor protein intact.

The mutant mice also had almost twice as much abdominal fat and more of the hormone leptin than those mice with their SIRT1 intact, despite the fact that all the mice maintained the same food intake and movement levels.

“We found that SIRT1 must be present in POMC neurons in order for the hormone leptin to properly engage its receptors in these neurons. Without SIRT1, leptin sensing is altered and the animals gain more fat mass when fed a high-calorie diet,” Dr. Coppari said.

In addition, the researchers found that SIRT1 must be present in POMC neurons for leptin to stimulate the remodeling of white adipose tissue into brown fat tissue, which “burns” fat to generate heat. White adipocytes primarily store fat.

“When SIRT1 is present in POMC neurons, the neurons properly convey a signal from leptin to the white perigonadal fat, which is designed to store energy. This signal is needed for the fat to undergo a remodeling process and expand the brown fat cells component as a protective measure against obesity,” Dr. Coppari said. “If you don’t have these kinds of defense mechanisms, you likely become hypersensitive to diet-induced obesity. A primary defect in SIRT1 in POMC neurons might be present in some individuals who are more prone to develop obesity when constantly exposed to an abundance of high-fat, high-calorie foods.”

Dr. Coppari said the idea of a drug that selectively could target neurons controlling specific fat depots – and that could trigger the remodeling of white fat into brown fat – has high potential.

“The drawback to harnessing adrenergic receptors to make more brown adipocytes, as a lot of people are thinking about doing, is that it puts a lot of pressure on the cardiovascular system,” he said. “However, the idea of having a drug that could selectively affect specific hypothalamic neurons that then control specific branches of the sympathetic nervous system suggests that one could avoid acting on unwanted cells but selectively on those able to burn calories such as brown adipocytes.

“We could control the remodeling of a particular fat depot into brown, which would then be more likely to cause weight loss without increasing the risk of cardiovascular problems,” he said.

The next step, Dr. Coppari said, is to determine whether SIRT1 is mediating other signaling pathways in the brain that in addition to regulating body weight are key for normal glucose balance.

Other UT Southwestern researchers involved in the study were Dr. Giorgio Ramadori, lead author and postdoctoral researcher in internal medicine; Dr. Teppei Fujikawa, postdoctoral researcher in internal medicine; Drs. Makoto Fukuda and Claudia Vianna, instructors of internal medicine; Jason Anderson, student research assistant in internal medicine; and Dr. Mario Perello, former postdoctoral researcher in internal medicine.

Researchers from the University of Iowa, Harvard Medical School and Brown University/Rhode Island Hospital also contributed to the study, which was funded by the National Institutes of Health and the American Heart Association.

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

Further reports about: Brain Medical Wellness POMC Protein SIRT1 methanol fuel cells signaling pathway weight loss

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>