Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The promise of stem cell-based gene therapy

29.06.2011
Will depend on novel gene delivery tools

Sophisticated genetic tools and techniques for achieving targeted gene delivery and high gene expression levels in bone marrow will drive the successful application of gene therapy to treat a broad range of diseases.

Examples of these cutting-edge methods are presented in a series of five provocative articles in the latest issue of Human Gene Therapy, a peer-reviewed journal published by Mary Ann Liebert, Inc. (www.liebertpub.com). The articles are available free online at www.liebertpub.com/hum

Barese and Dunbar highlight the advances in gene marking techniques that are enabling selection and targeting of specific immune cell populations for cell and gene therapy. The success of marking studies will help optimize gene transfer for immunotherapeutics and improve patient survival, conclude the authors in the review article "Contributions of Gene Marking to Cell and Gene Therapies."

Giordano et al. explore the use of PCR and next-generation DNA sequencing methods to identify specific gene products that are associated with successful long-term transfer of therapeutic genes to bone marrow. They report their findings in the research article entitled "Clonal Inventory Screens Uncover Monoclonality Following Serial Transplantation of MGMTP140K-Transduced Stem Cells and Dose-Intense Chemotherapy."

As a model for therapeutic gene delivery to bone marrow and peripheral blood cells to treat lysosomal storage disorders, Walia et al. describe successful gene replacement in a primate model of Farber disease. The study, "Autologous Transplantation of Lentivector/Acid Ceramidase-Transduced Hematopoietic Cells in Nonhuman Primates," reports the ability to replace acid ceramidase (AC) gene activity and reduced ceramide levels in blood cells transduced with the AC gene.

Hunter et al. present a study that compares the use of a human gene promoter with a mouse promoter-enhancer for achieving high levels of gene expression in a dog model of leukocyte adhesion deficiency type 1. "Gene Therapy for Canine Leukocyte Adhesion Deficiency with Lentiviral Vectors Using the Murine Stem Cell Virus and Human Phosphoglycerate Kinase Promoters" describes the study results.

Evidence to support the effective use of chromatin insulators—a class of DNA regulatory elements—to improve the expression and safety of gene transfer vectors is the focus of the Methods Review by David Emery entitled "The Use of Chromatin Insulators to Improve the Expression and Safety of Integrating Gene Transfer Vectors."

"Bone marrow-directed gene therapy was the first model considered in the treatment of genetic diseases and remains one of the most successful models in terms of clinical efficacy," says James M. Wilson, MD, PhD, Editor-in-Chief, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia.

Human Gene Therapy, the Official Journal of the European Society of Gene and Cell Therapy, British Society for Gene Therapy, French Society of Cell and Gene Therapy, German Society of Gene Therapy, and five other gene therapy societies is an authoritative peer-reviewed journal published monthly in print and online that presents reports on the transfer and expression of genes in mammals, including humans. Related topics include improvements in vector development, delivery systems, and animal models, particularly in the areas of cancer, heart disease, viral disease, genetic disease, and neurological disease, as well as ethical, legal, and regulatory issues related to the gene transfer in humans. Complete tables of content and a free sample issue may be viewed online at www.liebertpub.com/hum

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Tissue Engineering, Stem Cells and Development, and Cellular Reprogramming. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 60 journals, books, and newsmagazines is available at www.liebertpub.com.

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215 www.liebertpub.com

Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101

Vicki Cohn | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>