Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRB at Wayne State/DMC discover window of opportunity to prevent cerebral palsy

19.04.2012
Researchers at the Perinatology Research Branch of the National Institutes of Health, located at the Wayne State University School of Medicine and the Detroit Medical Center, have demonstrated that a nanotechnology-based drug treatment in newborn rabbits with cerebral palsy (CP) enabled dramatic improvement of movement disorders and the inflammatory process of the brain that causes many cases of CP. The findings strongly suggest that there may be an opportunity immediately after birth for drug treatment that could minimize CP.

The study is the first to show that an anti-inflammatory drug delivered with a nanodevice can dramatically improve CP symptoms in an animal model.

The report, "Dendrimer-Based Postnatal Therapy for Neuroinflammation and Cerebral Palsy in a Rabbit Model," was published April 18 in the prestigious journal Science Translational Medicine, published by the American Association for the Advancement of Science.

"The key finding of this work is that early identification of neuroinflammation allows postnatal treatment," said Roberto Romero, M.D., D.Med.Sci., chief of the Perinatology Research Branch and an author of the study. "This suggests that there is a window of opportunity to prevent cerebral palsy, and that the condition may be preventable."

Cerebral palsy is a disorder of the developing brain that affects motor skills and muscle coordination, often not diagnosed until the age of two or three years in children. The United Cerebral Palsy Foundation, a national advocacy and support group, estimates that 764,000 children and adults in the United States have CP. According to the U.S. Centers for Disease Control and Prevention, 100,000 babies born in the U.S. develop CP annually. A 2009 report by the CDC indicated the prevalence of the condition at 3.3 per 1,000 births. Worldwide, the CDC estimates the prevalence of CP births to range from 1.5 to 4 for every 1,000 births.

Risk factors for the condition include low birth weight and premature birth. Children born before the 32nd week of pregnancy are at high risk for developing CP. Intrauterine infection and/or inflammation is a major risk factor for CP.

Microglia - immune cells in the brain - play an important role in remodeling and growth during fetal and postnatal periods. Activation of these cells can cause an exaggerated inflammatory response, leading to brain injury and CP. Treatment is problematic because inflammation and the resulting injury can be spread throughout the brain's white matter. Transporting drugs across the blood-brain barrier also represents a challenge.

The PRB team hypothesized that it was possible to deliver a drug using a tiny device (or nanodevice) that would cross the blood-brain barrier and target the activated cells (microglia and astrocytes) in the brain involved in neuroinflammation.

The researchers used a rabbit model of congenital CP because it replicates the type of neuroinflammation found in human brains and the resulting motor deficits observed in children with the condition. The method consisted of exposing fetal rabbits to endotoxin (a component of bacteria). Endotoxin induced inflammation of the fetal brain but did not induce the onset of labor. When the rabbits were born, they had great difficulties walking or hopping. The experiment consisted of treating affected rabbits intravenously with either a saline solution, a drug known as NAC (N-acetyl-L-cysteine) or a dendrímer coupled with NAC, also known as a D-NAC conjugate. Rabbits with CP treated with D-NAC on the first day of life showed a dramatic improvement and, within five days, were able to walk and hop. Rabbits treated with the NAC conjugate also showed a higher neuron count and lower evidence of inflammation compared to untreated animals.

NAC is an antioxidant and anti-inflammatory agent. It is being explored in several ongoing clinical trials to test its potential in autism spectrum disorders, pregnant women for the treatment of maternal and fetal inflammation, and Alzheimer's disease. Dendrimers are synthetic biomimics of globular polymers of the amino acid alanine. Researchers are exploring their use as a vehicle to target drug delivery, a science known as nanotechnology.

The authors believe that conjugating NAC with dendrimers allows delivery of the drug directly to the cells involved, providing greater effectiveness.

"One of the challenges of the 21st century is to rebuild brains injured during fetal or neonatal life, and to prevent not only cerebral palsy, but also other brain disorders," Dr. Romero said.

The CDC estimates that the lifetime cost to care for a person with CP amounts to nearly $1 million (in 2003 dollars). The estimated combined lifetime cost for all Americans born with CP in 2000 is expected to total $11.5 billion in direct and indirect costs.

While still in preclinical testing in animals, the dendrimer-drug conjugate shows promise for postnatal treatment of babies suspected of having CP.

The therapy described by the PRB researchers also holds promise for possible future treatments of some neurological disorders, including multiple sclerosis. The brain, for the most part, can be divided into gray and white areas. Neurons are located in the gray area, and the white parts are where the neurons send their axons -- similar to electrical cables carrying messages -- to communicate with other neurons or muscles. Oligodendrocyte cells manufacture a cholesterol-rich membrane called myelin that coats the axons. The myelin's function is to insulate the axons, much like the plastic coating on an electrical cable. In addition, the myelin speeds communication along axons and makes that communication much more reliable. Patients with multiple sclerosis display neuronal loss and myelin abnormalities that reduce the myelin coating.

The PRB team found that D-NAC therapy also improved the production of myelin and reduced the neuroinflammation associated with the loss of myelin. In fact, by the fifth day after treatment with D-NAC, the CP rabbits demonstrated a significant increase in myelin that nearly matched healthy control animals.

"This is certainly an exciting breakthrough and it certainly points toward new hope for those affected by cerebral palsy," said Rangaramanujam M. Kannan, Ph.D., a chemical engineer and a member of the PRB research team and an author of the study. "We found that the administration of the anti-inflammatory agent coupled with the dendrimers allowed the drug to not only cross the blood-brain barrier but also to target the cells that cause the neuroinflammation in CP. Of course, this approach and these compounds are not yet approved for testing in humans, and further studies are required to find the optimal dose, duration of treatment and establish safety. More questions need to be answered, but the potential is immense."

"The use of a rabbit model is a unique aspect of the work, since this model mimics the phenotype of CP as seen in humans. This also illustrates the potential of research collaborations across disciplines in advancing and translating novel technologies for the treatment of debilitating childhood disorders," said Dr. Sujatha Kannan, a pediatrician and first author of the study.

Dr. Kannan said the work was made possible by the development of an animal model of cerebral palsy, the implementation of molecular imaging to detect neuroinflammation at the time of birth and the coupling of the nanodevices (dendrimers) with NAC. The significance of the work is that it opens avenues for the treatment of neuroinflammation, a mechanism of disease not only for cerebral palsy, but for other conditions such as meningitis, encephalitis and multiple sclerosis.

"This is tremendous recognition of the research breakthroughs and the power of the partnership between Wayne State University, the Detroit Medical Center and the Perinatology Research Branch," said Valerie M. Parisi, M.D., M.P.H., dean of the Wayne State University School of Medicine. "This study has the potential to pull back a curtain that has shrouded a medical challenge not just in relation to cerebral palsy, but with other conditions that affect millions around the world."

DMC President and CEO Michael Duggan said that the publication of the PRB study marked "a hugely important step forward in the decades-old struggle to protect infants and their parents from the immense suffering caused by cerebral palsy.

"As a healing institution with a passionate commitment to medical research, having Dr. Romero's PRB team working on our campus daily for the past 12 years has been extraordinarily gratifying," Duggan said. "For all of us at the DMC, this is a deeply rewarding moment."

The Perinatology Research Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health at Wayne State University is located in the Detroit Medical Center's Hutzel Women's Hospital and in basic science laboratories in the WSU C.S. Mott Center. The PRB is strategically located to serve a high-risk population that requires the full spectrum of services the branch offers. The branch has produced groundbreaking research and cared for more than 20,000 mothers in Detroit.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>