Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Targets for Antidepressant Medications

27.08.2008
The news about antidepressant medications over the past several years has been mixed. The bad news from large multicenter studies such as STAR*D is that current antidepressant medications are effective, but not as effective as one might hope.

Thus, there is a significant need for new treatment mechanisms for depression. On that front, there has been mixed news as well. One of the most exciting new drugs to reach human clinical trials, one that blocks the corticotrophin releasing factor-1 (CRF1) receptor, did not work in a large clinical trial sponsored by Pfizer Pharmaceuticals.

Is it time to abandon CRF1 antagonists as antidepressants or should we revisit these agents from a new perspective? It is in this context that a new paper by Alexandre Surget and colleagues, scheduled for publication in the August 15th issue of Biological Psychiatry, is particularly interesting.

Through prior work, it has been shown that the ability to reverse the stress-related disruption of hippocampal neurogenesis, the ability of the brain to make new nerve cells in adulthood, was important to the actions of our available antidepressant medications. In this new study, the researchers affirm the prior findings, but suggest that two experimental approaches to the treatment of depression, blockade of the CRF1 receptor or the vasopressin-1B (V1B) receptor, retain their efficacy in reversing the impact of stress on behavior even when neurogenesis is disrupted. Catherine Belzung, Ph.D., corresponding author on this article, further explains that “we now report evidence that restoration of the functioning of the stress axis may be the key to how these new antidepressant approaches might work.”

How can one reconcile these interesting research findings in animals with the lack of antidepressant efficacy of a CRF1 receptor antagonist in the Pfizer study? Is this approach simply ineffective in humans or might there be subgroups of patients who might be more likely to respond to a CRF1 antagonist? The Surget et al. data raise the possibility that CRF1 receptor antagonists might be effective in treating stress-related behavioral disturbances even in a context where other antidepressants do not work, perhaps due to disruption of neurogenesis. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “These findings lend weight to the hope that CRF1 antagonists might play a role in the treatment of antidepressant-resistant symptoms of depression or posttraumatic stress disorder.

If so, CRF1 antagonists could fulfill an important unmet need.” He adds that “we do not need another Prozac, but we urgently need to find ways to help the large number of patients who fail to respond adequately to our available treatments.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>