Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Targets for Antidepressant Medications

27.08.2008
The news about antidepressant medications over the past several years has been mixed. The bad news from large multicenter studies such as STAR*D is that current antidepressant medications are effective, but not as effective as one might hope.

Thus, there is a significant need for new treatment mechanisms for depression. On that front, there has been mixed news as well. One of the most exciting new drugs to reach human clinical trials, one that blocks the corticotrophin releasing factor-1 (CRF1) receptor, did not work in a large clinical trial sponsored by Pfizer Pharmaceuticals.

Is it time to abandon CRF1 antagonists as antidepressants or should we revisit these agents from a new perspective? It is in this context that a new paper by Alexandre Surget and colleagues, scheduled for publication in the August 15th issue of Biological Psychiatry, is particularly interesting.

Through prior work, it has been shown that the ability to reverse the stress-related disruption of hippocampal neurogenesis, the ability of the brain to make new nerve cells in adulthood, was important to the actions of our available antidepressant medications. In this new study, the researchers affirm the prior findings, but suggest that two experimental approaches to the treatment of depression, blockade of the CRF1 receptor or the vasopressin-1B (V1B) receptor, retain their efficacy in reversing the impact of stress on behavior even when neurogenesis is disrupted. Catherine Belzung, Ph.D., corresponding author on this article, further explains that “we now report evidence that restoration of the functioning of the stress axis may be the key to how these new antidepressant approaches might work.”

How can one reconcile these interesting research findings in animals with the lack of antidepressant efficacy of a CRF1 receptor antagonist in the Pfizer study? Is this approach simply ineffective in humans or might there be subgroups of patients who might be more likely to respond to a CRF1 antagonist? The Surget et al. data raise the possibility that CRF1 receptor antagonists might be effective in treating stress-related behavioral disturbances even in a context where other antidepressants do not work, perhaps due to disruption of neurogenesis. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “These findings lend weight to the hope that CRF1 antagonists might play a role in the treatment of antidepressant-resistant symptoms of depression or posttraumatic stress disorder.

If so, CRF1 antagonists could fulfill an important unmet need.” He adds that “we do not need another Prozac, but we urgently need to find ways to help the large number of patients who fail to respond adequately to our available treatments.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>