Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Targets for Antidepressant Medications

27.08.2008
The news about antidepressant medications over the past several years has been mixed. The bad news from large multicenter studies such as STAR*D is that current antidepressant medications are effective, but not as effective as one might hope.

Thus, there is a significant need for new treatment mechanisms for depression. On that front, there has been mixed news as well. One of the most exciting new drugs to reach human clinical trials, one that blocks the corticotrophin releasing factor-1 (CRF1) receptor, did not work in a large clinical trial sponsored by Pfizer Pharmaceuticals.

Is it time to abandon CRF1 antagonists as antidepressants or should we revisit these agents from a new perspective? It is in this context that a new paper by Alexandre Surget and colleagues, scheduled for publication in the August 15th issue of Biological Psychiatry, is particularly interesting.

Through prior work, it has been shown that the ability to reverse the stress-related disruption of hippocampal neurogenesis, the ability of the brain to make new nerve cells in adulthood, was important to the actions of our available antidepressant medications. In this new study, the researchers affirm the prior findings, but suggest that two experimental approaches to the treatment of depression, blockade of the CRF1 receptor or the vasopressin-1B (V1B) receptor, retain their efficacy in reversing the impact of stress on behavior even when neurogenesis is disrupted. Catherine Belzung, Ph.D., corresponding author on this article, further explains that “we now report evidence that restoration of the functioning of the stress axis may be the key to how these new antidepressant approaches might work.”

How can one reconcile these interesting research findings in animals with the lack of antidepressant efficacy of a CRF1 receptor antagonist in the Pfizer study? Is this approach simply ineffective in humans or might there be subgroups of patients who might be more likely to respond to a CRF1 antagonist? The Surget et al. data raise the possibility that CRF1 receptor antagonists might be effective in treating stress-related behavioral disturbances even in a context where other antidepressants do not work, perhaps due to disruption of neurogenesis. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “These findings lend weight to the hope that CRF1 antagonists might play a role in the treatment of antidepressant-resistant symptoms of depression or posttraumatic stress disorder.

If so, CRF1 antagonists could fulfill an important unmet need.” He adds that “we do not need another Prozac, but we urgently need to find ways to help the large number of patients who fail to respond adequately to our available treatments.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>