Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Targets for Antidepressant Medications

27.08.2008
The news about antidepressant medications over the past several years has been mixed. The bad news from large multicenter studies such as STAR*D is that current antidepressant medications are effective, but not as effective as one might hope.

Thus, there is a significant need for new treatment mechanisms for depression. On that front, there has been mixed news as well. One of the most exciting new drugs to reach human clinical trials, one that blocks the corticotrophin releasing factor-1 (CRF1) receptor, did not work in a large clinical trial sponsored by Pfizer Pharmaceuticals.

Is it time to abandon CRF1 antagonists as antidepressants or should we revisit these agents from a new perspective? It is in this context that a new paper by Alexandre Surget and colleagues, scheduled for publication in the August 15th issue of Biological Psychiatry, is particularly interesting.

Through prior work, it has been shown that the ability to reverse the stress-related disruption of hippocampal neurogenesis, the ability of the brain to make new nerve cells in adulthood, was important to the actions of our available antidepressant medications. In this new study, the researchers affirm the prior findings, but suggest that two experimental approaches to the treatment of depression, blockade of the CRF1 receptor or the vasopressin-1B (V1B) receptor, retain their efficacy in reversing the impact of stress on behavior even when neurogenesis is disrupted. Catherine Belzung, Ph.D., corresponding author on this article, further explains that “we now report evidence that restoration of the functioning of the stress axis may be the key to how these new antidepressant approaches might work.”

How can one reconcile these interesting research findings in animals with the lack of antidepressant efficacy of a CRF1 receptor antagonist in the Pfizer study? Is this approach simply ineffective in humans or might there be subgroups of patients who might be more likely to respond to a CRF1 antagonist? The Surget et al. data raise the possibility that CRF1 receptor antagonists might be effective in treating stress-related behavioral disturbances even in a context where other antidepressants do not work, perhaps due to disruption of neurogenesis. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “These findings lend weight to the hope that CRF1 antagonists might play a role in the treatment of antidepressant-resistant symptoms of depression or posttraumatic stress disorder.

If so, CRF1 antagonists could fulfill an important unmet need.” He adds that “we do not need another Prozac, but we urgently need to find ways to help the large number of patients who fail to respond adequately to our available treatments.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>