Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential Alzheimer's drug prevents abnormal blood clots in the brain

30.06.2014

Without a steady supply of blood, neurons can't work. That's why one of the culprits behind Alzheimer's disease is believed to be the persistent blood clots that often form in the brains of Alzheimer's patients, contributing to the condition's hallmark memory loss, confusion and cognitive decline.

New experiments in Sidney Strickland's Laboratory of Neurobiology and Genetics at Rockefeller University have identified a compound that might halt the progression of Alzheimer's by interfering with the role amyloid-β, a small protein that forms plaques in Alzheimer's brains, plays in the formation of blood clots. This work is highlighted in the July issue of Nature Reviews Drug Discovery.


Treatment with the compound RU-505 improved the chronic and damaging inflammation (red) in the brains of mice exhibiting Alzheimer's (top), as compared to Alzheimer's mice that went untreated (bottom).

Credit: Strickland Lab, The Rockefeller University

For more than a decade, potential Alzheimer's drugs have targeted amyloid-β, but, in clinical trials, they have either failed to slow the progression of the disease or caused serious side effects. However, by targeting the protein's ability to bind to a clotting agent in blood, the work in the Strickland lab offers a promising new strategy, according to the highlight, which will be published in print on July 1.

This latest study builds on previous work in Strickland's lab showing amyloid-β can interact with fibrinogen, the clotting agent, to form difficult-to-break-down clots that alter blood flow, cause inflammation and choke neurons.

"Our experiments in test tubes and in mouse models of Alzheimer's showed the compound, known as RU-505, helped restore normal clotting and cerebral blood flow. But the big pay-off came with behavioral tests in which the Alzheimer's mice treated with RU-505 exhibited better memories than their untreated counterparts," Strickland says. "These results suggest we have found a new strategy with which to treat Alzheimer's disease."

RU-505 emerged from a pack of 93,716 candidates selected from libraries of compounds, the researchers write in the June issue of the Journal of Experimental Medicine. Hyung Jin Ahn, a research associate in the lab, examined these candidates with a specific goal in mind: Find one that interferes with the interaction between fibrinogen and amyloid-β.

In a series of tests that began with a massive, automated screening effort at Rockefeller's High Throughput Resource Center, Ahn and colleagues winnowed the 93,000 contenders to five. Then, test tube experiments whittled the list down to one contender: RU-505, a small, synthetic compound. Because RU-505 binds to amyloid-β and only prevents abnormal blood clot formation, it does not interfere with normal clotting. It is also capable of passing through the blood-brain barrier.

"We tested RU-505 in mouse models of Alzheimer's disease that over-express amyloid- β and have a relatively early onset of disease. Because Alzheimer's disease is a long-term, progressive disease, these treatments lasted for three months," Ahn says. "Afterward, we found evidence of improvement both at the cellular and the behavioral levels."

The brains of the treated mice had less of the chronic and harmful inflammation associated with the disease, and blood flow in their brains was closer to normal than that of untreated Alzheimer's mice. The RU-505-treated mice also did better when placed in a maze. Mice naturally want to escape the maze, and are trained to recognize visual cues to find the exit quickly. Even after training, Alzheimer's mice have difficulty in exiting the maze. After these mice were treated with RU-505, they performed much better.

"While the behavior and the brains of the Alzheimer's mice did not fully recover, the three-month treatment with RU-505 prevents much of the decline associated with the disease," Strickland says.

The researchers have begun the next steps toward developing a human treatment. Refinements to the compound are being supported by the Robertson Therapeutic Development Fund and the Tri-Institutional Therapeutic Discovery Institute. As part of a goal to help bridge critical gaps in drug discovery, these initiatives support the early stages of drug development, as is being done with RU-505.

"At very high doses, RU-505 is toxic to mice and even at lower doses it caused some inflammation at the injection site, so we are hoping to find ways to reduce this toxicity, while also increasing RU-505's efficacy so smaller doses can accomplish similar results," Ahn says.

Zach Veilleux | Eurek Alert!

Further reports about: Alzheimer's behavioral blood clots inflammation progression

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>