Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Portable finger-probe device can successfully measure liver function in potential organ donors


Finding may save thousands of dollars spent on surgical evaluation teams

A portable, finger-probe device successfully measured liver function in brain dead adult organ donors, a finding that could change the way organs are assessed and save thousands of dollars per transplant, a UCLA study has found.

This device successfully measured liver function in potential organ donors

Credit: Pulsion

Working with OneLegacy, the non-profit organ and tissue recovery organization serving the greater Los Angeles area, UCLA researchers measured liver function in 53 potential organ donors in a blind study of the device. Eleven livers were declined because of poor quality and the other 42 were transplanted and their function tested later to compare to the results obtained using the device, said study first author Dr. Ali Zarrinpar, an assistant professor of surgery in the Division of Liver and Pancreas Transplantation.

"This device is best single predictor of organ survival in our patients," Zarrinpar said. "Ultimately, what it does is gives us a quantitative measure of how good a liver is without having to visually inspect the organ. It gives us a measurement to talk about when we're thinking about whether to transplant an organ into a recipient."

The study appears in the early online edition of the Journal of Surgical Research.

Although there are accurate and reliable function tests for other donor organs, this is not the case for livers, Zarrinpar said.

Currently, depending on a thorough assessment of a potential donor's medical history, multiple blood tests and any hospital treatments, a surgical team from the recipient's medical center is dispatched to the donor's location to visually inspect and potentially procure the organ. That team costs thousands of dollars per procedure, Zarrinpar said, and about 10 to 15 percent of the time the organ is deemed unusable.

On the flip side, an organ from a patient with a questionable history or borderline laboratory results may be considered a waste of the surgical team's time and the retrieval effort abandoned. However, this device could easily be used to test organ function in such marginal donors, so its use could increase of number of organs used for transplant.

"Although the number of transplant candidates continues to grow, organ availability has plateaued, resulting in more patients dying while on transplant waiting lists," Zarrinpar said. "This device, which can be used in any hospital, could help increase the number of donor livers and help save very sick patients waiting for transplant."

The device operates much like a pulse oximeter, which attaches to the finger to measure oxygen in the blood. In this case, the device measures the rate at which a dye, injected into the potential donor's bloodstream, is cleared by the liver. This novel, non-invasive and rapid test successfully predicted which livers would function properly in transplant patients, Zarrinpar said.

A liver transplant may involve the whole liver, a reduced liver, or a liver segment. Most transplants involve the whole organ, but transplants using segments of the liver have been performed with increasing frequency in recent years. This would allow two liver recipients to be transplanted from one donor or to allow for living donor liver donation.

Every year, more than 1,500 people die waiting for a donated liver to become available. Currently, about 17,000 adults and children have been medically approved for liver transplants and are waiting for donated livers to become available, according to the American Liver Foundation.

"These data warrant further exploration in a larger trial in a variety of settings to evaluate acceptable values for donated livers," the study states. "At a time of increasing regional sharing and calls for national organ sharing, this method would assist in the standardization of graft evaluation. It could also lead to increasing liver graft utilization while decreasing travel risk and expenses."

The research was funded by the Dumont-UCLA Transplant Center and the National Institutes of Health (UL1TR000124).

The liver transplant program at UCLA was inaugurated in 1984 and has grown to be the most active program in the world. Since the program's inception, liver transplants have been performed at UCLA for infants, children and adults, focusing on innovative surgical techniques, advances in immunosuppressive drugs and quality patient care.

As the most experienced liver transplantation program in the western United States, UCLA serves patients from California, Oregon, Washington, and throughout the Southwest, and acts as a tertiary referral center for other transplant programs faced with particularly challenging cases.

Kim Irwin | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>