Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic tumors are marked for immunotherapy

01.12.2009
Pancreatic tumors can be identified by a readily detectable marker that shows promise as a basis for immune therapy against the disease, according to research at Washington University School of Medicine in St. Louis.

The marker is mesothelin, a protein normally found on mesothelial cells that line the body cavities. Several types of cancer cells make large amounts of mesothelin, which then circulates in the blood.

Mesothelin levels in the blood were shown in earlier studies to predict survival in patients with ovarian cancer and mesothelioma (a cancer of mesothelial cells). The researchers wanted to know if elevated blood levels of mesothelin could be used as a biological indicator for pancreatic disease. The study, published this month in Clinical Cancer Research, also examined whether the protein could be useful for immune-based cancer treatments.

"All pancreatic tumor specimens we tested displayed mesothelin on them, and the protein could be detected in the blood of 99 percent of our study patients with pancreatic cancer," says co-senior author Peter Goedegebuure, Ph.D., research associate professor of surgery. "Other studies suggest that mesothelin plays an essential role in the development and growth of cancer, making it an ideal target for therapy."

Pancreatic adenocarcinoma, the most common type of pancreatic cancer, strikes about 40,000 Americans per year. However, it is often not diagnosed until advanced stages of the disease because symptoms are non-specific or completely absent. Fewer than five percent of patients will survive more than five years after diagnosis.

"If we can turn on the immune system to attack cells that have mesothelin, that might become an important part of pancreatic cancer therapy," says co-senior author William G. Hawkins, M.D., a pancreatic cancer surgeon with the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University. "Because mesothelin aids tumor growth, loss of mesothelin could make cancer cells behave more like normal cells. That means even if immunotherapy only knocked out the mesothelin in pancreatic cancer cells instead of killing the cells, it could still be effective. That's what's so exciting about mesothelin as a therapeutic target."

The study showed that mesothelin in the blood was significantly higher in 73 of 74 patients with pancreatic adenocarcinoma when compared to healthy people. There was no relationship between stage of disease or tumor volume and level of circulating mesothelin. Additionally, five patients with benign pancreatic disease who were tested had high levels of circulating mesothelin.

"A number of benign or inflammatory conditions of the pancreas increase mesothelin levels as much as pancreatic cancers do," says Hawkins, who is also associate professor of surgery at Washington University School of Medicine. "So our study suggests that blood mesothelin levels will not be useful for diagnosing pancreatic cancer or predicting patient outcome."

However, the researchers discovered that immune cells taken from pancreatic cancer patients could be coaxed to target mesothelin.

"Mesothelin-specific immune cells are present in pancreatic cancer patients and can be activated," Goedegebuure says. "And those results suggest that we could potentially design a vaccine to boost the immune response to mesothelin to target pancreatic cancer cells."

Before that becomes a reality, the team will need to overcome obstacles that have previously limited the success of immune-based strategies targeted at cancer, says Hawkins.

"We need three things to come together," Hawkins says. "We need to identify the correct antigens, and this paper suggests mesothelin is one. We need to introduce the antigen in a way that looks dangerous to the human body to elicit an immune response. And we need to interfere with the ability of cancers to turn down the immune response near them."

Researchers have made progress on these fronts. Hawkins is conducting a clinical trial with pancreatic cancer patients of an agent that may boost activation of tumor-specific immune cells. Other researchers at Washington University are testing vaccines that train the immune system to recognize cancer-specific antigens and methods of reducing cancer's ability to suppress immune responses.

"The real breakthroughs in cancer immunotherapy are going to come when we bring these kinds of independent projects together into combined therapies," Hawkins says.

Johnston FMc, Tan MCB, Tan BR, Porembka MR, Brunt EM, Linehan DC, Simon PO. Plambeck-Suess S, Eberlein TJ, Hellstrom KE, Hellstrom I, Hawkins WG, Goedegebuure P. Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer. Clinical Cancer Research Nov. 1, 2009; 15(21):6511-6518.

Funding from the National Institutes of Health, the American Association of Cancer Research/PanCAN and the Barnes-Jewish Hospital Foundation supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Siteman Cancer Center is the only federally designated Comprehensive Cancer Center within a 240-mile radius of St. Louis. Siteman Cancer Center is composed of the combined cancer research and treatment programs of Barnes-Jewish Hospital and Washington University School of Medicine. Siteman has satellite locations in West County and St. Peters, in addition to its full-service facility at Washington University Medical Center on South Kingshighway.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>