Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin of aggressive ovarian cancer discovered

07.03.2013
Cornell University researchers have discovered a likely origin of epithelial ovarian cancer (ovarian carcinoma), the fifth leading cause of cancer death among women in the United States.
Pinpointing where this cancer originates has been difficult because 70 percent of patients are in advanced stages of disease by the time it is detected. Because the origin of ovarian carcinoma development is unknown, early diagnostic tests have so far been unsuccessful.

Some epithelial cancers are known to occur in transitional zones between two types of epithelium (layers of tissue that line the body and organs and form glands), while others originate in epithelial tissue stem cells. All organs have the capacity for regeneration, which is done by adult stem cells located in areas of each organ called stem cell niches.

With this knowledge, the researchers discovered a novel stem cell niche for the ovarian surface epithelium in mice and showed that ovarian carcinoma preferentially originates from stem cells found in that niche, according to the study published March 6 in the journal Nature. This stem cell niche lies in a transitional area known as the hilum region, a layer of cells that links the ovary to the rest of the body.

"We now know where these cells are located in mice, so we can look in humans in those areas," said Alexander Nikitin, professor of pathology, leader of the Cornell Stem Cell Program and the paper's senior author. Andrea Flesken-Nikitin, a postdoctoral researcher in Nikitin's lab, is the paper's lead author. The findings also provide a guide for scientists to look for stem cell niches and sources of cancer in other transitional zones in other organs, Nikitin added.

The researchers proved that stem cells from the hilum region were highly prone to ovarian carcinoma, using the most current genetic research techniques.

The researchers first found that cells in the hilum region express a known marker for stem cells, called ALDH1. They then isolated ALDH1 positive cells, sequenced their genetic profiles and found many markers previously reported for stem cells in other organs.
One of these markers, LGR5, has been studied for intestinal stem cells by other researchers who have bred special mice and developed an advanced method that uses a fluorescent protein to follow stem cells. The gene encoding the fluorescent protein is passed down from a stem cell to each generation of daughter cells, thereby marking the lineage. The technique "allows you to see the fate of stem cells over time," said Nikitin. Using the method on the hilum cells, "we showed that cells from the hilum area spread around the whole ovary."

Finally, the researchers microdissected ovary and hilum cells, inactivated two tumor suppressor genes p53 and Rb1, whose pathways are commonly altered in human aggressive ovarian carcinoma, and injected cells into the abdominal cavity of mice. Very few tumors developed in the mice injected with ovary cells, but almost all of the mice injected with hilum cells died after developing aggressive, metastasizing cancers that were similar to human ovarian carcinomas.

In future work, the researchers will look for stem cells and sources of cancer in transitional zones in the human ovary and other organs, such as the stomach, rectum and uterine cervix.

The research was funded by the National Institutes of Health, National Cancer Institute, New York State Stem Cell Science, Marsha Rivkin Center for Ovarian Cancer Research and Russian Ministry of Education and Science.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>