Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nicotine may have more profound impact than previously thought

07.04.2009
Nicotine isn't just addictive. It may also interfere with dozens of cellular interactions in the body, new Brown University research suggests.

Conversely, the data could also help scientists develop better treatments for various diseases. Pharmaceutical companies rely on basic research to identify new cellular interactions that can, in turn, serve as targets for potential new drugs.

"It opens several new lines of investigation," said lead author Edward Hawrot, professor of molecular science, molecular pharmacology, physiology and biotechnology at Brown University.

Hawrot's research is highlighted in a paper published April 3 in the Journal of Proteome Research. He and a team that included graduate students William Brucker and Joao Paulo set out to provide a more basic understanding of how nicotine affects the process of cell communication through the mammalian nervous system.

The Brown University researchers looked specifically at the alpha-7 nicotinic acetylcholine receptor in mouse brain tissue. A very similar receptor exists in humans. The alpha-7 receptor is the most enigmatic of the so-called "nicotinic" receptors, so named because nicotine binds to them when it is introduced into the body. Most receptors are on the surface of cells and are sensitive to small signaling molecules such as the neurotransmitter acetylcholine, which is the naturally occurring signal the body uses to activate alpha-7 receptors.

Their discovery: 55 proteins were found to interact with the alpha-7 nicotinic receptor. Scientists had not previously known of those connections.

"This is called a "nicotinic" receptor and we think of it as interacting with nicotine, but it likely has multiple functions in the brain," Hawrot said. "And in various, specific regions of the brain this same alpha-7 receptor may interact with different proteins inside neurons to do different things."

One in particular — the G alpha protein — was among the most unexpected proteins to be identified in the study, as it is usually associated with a completely different class of receptors (the eponymous G-protein coupled receptors (GPCRs).

This finding is significant because G alpha proteins are involved in many different biochemical and signaling processes throughout the brain and the rest of the body. body.

An example of the importance of G alpha proteins: 40 percent of all currently used therapeutic drugs target a member of the large GPCR family of receptors.

The new finding suggests that the alpha-7 receptors have a much broader role in the body than previously suspected and that the newly identified associated proteins could also be affected when nicotine binds to the alpha-7 receptor.

Nicotine may affect bodily processes — and perhaps the actions of other commonly used drugs — more broadly than was previously thought.

This advance could lead to the development of new treatments to combat smoking addiction. At the same time, the finding could also have future implications for diseases such as schizophrenia, Hawrot said.

Recent genetic studies have suggested that some cases of schizophrenia are associated with deletions where a block of genes, including the gene for the alpha-7 receptor, is missing. Hawrot said the connection, while not conclusive, offers hope for new strategies in the development of treatments for those suffering from the disorder.

To conduct their study, Hawrot's lab looked at mice genetically engineered by other researchers to lack the alpha-7 nicotinic acetylcholine receptor. Those mice were compared with normal mice, so the difference in receptor-associated proteins could be highlighted.

Grants from the National Institutes of Health and the Rhode Island Research Alliance helped support the study.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>