Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons that control overeating also drive appetite for cocaine

25.06.2012
Researchers at Yale School of Medicine have zeroed in on a set of neurons in the part of the brain that controls hunger, and found that these neurons are not only associated with overeating, but also linked to non-food associated behaviors, like novelty-seeking and drug addiction.

Published in the June 24 online issue of Nature Neuroscience, the study was led by Marcelo O. Dietrich, postdoctoral associate, and Tamas L. Horvath, the Jean and David W. Wallace Professor of Biomedical Research and chair of comparative medicine at Yale School of Medicine.

In attempts to develop treatments for metabolic disorders such as obesity and diabetes, researchers have paid increasing attention to the brain's reward circuits located in the midbrain, with the notion that in these patients, food may become a type of "drug of abuse" similar to cocaine. Dietrich notes, however, that this study flips the common wisdom on its head.

"Using genetic approaches, we found that increased appetite for food can actually be associated with decreased interest in novelty as well as in cocaine, and on the other hand, less interest in food can predict increased interest in cocaine," said Dietrich.

Horvath and his team studied two sets of transgenic mice. In one set, they knocked out a signaling molecule that controls hunger-promoting neurons in the hypothalamus. In the other set, they interfered with the same neurons by eliminating them selectively during development using diphtheria toxin. The mice were given various non-invasive tests that measured how they respond to novelty, and anxiety, and how they react to cocaine.

"We found that animals that have less interest in food are more interested in novelty-seeking behaviors and drugs like cocaine," said Horvath. "This suggests that there may be individuals with increased drive of the reward circuitry, but who are still lean. This is a complex trait that arises from the activity of the basic feeding circuits during development, which then impacts the adult response to drugs and novelty in the environment."

Horvath and his team argue that the hypothalamus, which controls vital functions such as body temperature, hunger, thirst fatigue and sleep, is key to the development of higher brain functions. "These hunger-promoting neurons are critically important during development to establish the set point of higher brain functions, and their impaired function may be the underlying cause for altered motivated and cognitive behaviors," he said.

"There is this contemporary view that obesity is associated with the increased drive of the reward circuitry," Horvath added. "But here, we provide a contrasting view: that the reward aspect can be very high, but subjects can still be very lean. At the same time, it indicates that a set of people who have no interest in food, might be more prone to drug addiction."

Other authors on the study included Jeremy Bober, Jozelia G. Ferreira, Luis A. Tellez, Yann Mineur, Diogo o. Souza, Xiao-Bing Gao, Marina Picciotto, Ivan Araujo, and Zhong-Wu Liu.

The study was supported by The National Institutes of Health Director's Pioneer Award to Horvath; and in part by the National Institute on Deafness and Other Communication Disorders.

Citation: Nature Neuroscience June 24, 2012, doi: 10.1038/nn.3147

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>