Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naturally-occurring substance proves effective against deadly skin cancer in laboratory tests

11.04.2013
For the first time, scientists have demonstrated the mechanism of action of gossypin, a naturally-occurring substance found in fruits and vegetables, as a treatment for melanoma, which causes the majority of deaths from skin cancer.
"We identified gossypin as a novel agent with dual inhibitory activity towards two common mutations that are the ideal targets for melanoma treatment," said Texas Biomed's Hareesh Nair, Ph.D.

At the moment, there is no single therapeutic agent or combination regimen available to treat all melanomas, of which about 76,000 new cases are diagnosed annually, according to the American Cancer Society.
"Our results indicate that gossypin may have great therapeutic potential as a dual inhibitor of mutations called BRAFV600E kinase and CDK4, which occur in the vast majority of melanoma patients. They open a new avenue for the generation of a novel class of compounds for the treatment of melanoma," Nair added.

His report, appearing in the March 29, 2013 issue of the journal Molecular Cancer Therapeutics, was funded by the Texas Biomedical Forum and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.
Nair and his colleagues found that gossypin inhibited human melanoma cell proliferation, in vitro, in melanoma cell lines that harbor the two mutations. Gossypin stunted activities of the mutated genes, possibly through direct binding with them. It also inhibited the growth of various human melanoma cells. In addition, gossypin treatment for 10 days of human melanoma cell tumors with the mutations transplanted into mice reduced tumor volume and increased survival rate.

Further studies are planned by Nair's team to understand how the body absorbs gossypin and how it is metabolized. This idea has been discussed with the Cancer Therapy & Research Center at the UT Health Science Center San Antonio's Deva Mahalingam, M.D, Ph.D., who is interested in testing gossypin in melanoma patients.
Co-authors on the paper include John L. VandeBerg, Ph.D., and Shylesh Bhaskaran, Ph.D., of Texas Biomed; Kalarikkal V. Dileep, M.Sc., and Chittalakkottu Sadasivan, Ph.D., of Kannur University, in Palayad, India; Deepa S. Sathyaseelan, Ph.D., of the Barshop Institute for Longevity and Aging Studies at the UT Health Science Center San Antonio; Mitch Klausner, Ph.D., of the MatTek Corporation; and Naveen K. Krishnegowda, M.D., and Rajeshwar R. Tekmal, Ph.D., of the Department of Obstetrics and Gynecology at the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas Biomed partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy. For more information on Texas Biomed, go to http://www.TxBiomed.org, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:
http://www.txbiomed.org

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>