Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology delivery system offers new approach to skin disease therapies

01.03.2016

Hebrew University formula that activates the body's natural defense against free radicals could control a variety of skin pathologies and disorders

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body's natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders.


These are the consequences of skin exposure to stressors.

Credit: Maya Ben-Yehuda Greenwald

The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) - oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA.

In the skin - the largest organ of the body - an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress.

The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion - Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance - a gentle equilibrium between Reactive Oxygen Species and their detoxification.

"The approach of using the body's own defense system is very effective. We showed that activation of the body's defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure," said Hebrew University researcher Maya Ben-Yehuda Greenwald.

Ben-Yehuda Greenwald showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

"Currently, there are many scientific studies supporting the activation of the body's defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so," Ben-Yehuda Greenwald said.

Production of antioxidant enzymes in the body is signaled in the DNA by activation of Nrf2 - a powerful protein that exists in every cell in our body. This Nrf2 cellular-protective signaling pathway is a major intersection of many other signaling pathways affecting each other and determining cell functionality and fate. Nrf2 is capable of coordinating the cellular response to internal as well as external stressors by tight regulation of phase-II protective enzymes, such as the antioxidant enzymes.

Ben-Yehuda Greenwald has also discovered a new family of compounds capable of activating the Nrf2 pathway. Moreover, by incorporating them into the unique delivery system she has developed, she managed to efficiently stimulate the activation of the Nrf2 pathway and mimic the activity of the body's' natural way of coping with a variety of stress conditions.

"The formula we have created could be used in topical medication for treating skin conditions. Our formula could be used both as preventive means and for treatment of various skin conditions, such as infections, over-exposure to UV irradiation, inflammatory conditions, and also internal disease," she said.

While the researchers focused on the skin, the formulation could prove to be effective in enhancing the body's natural protection against the damaging effects of ROS in other parts of the body, such as inflammation in cardiovascular diseases, heart attack, cancer, multiple sclerosis and Alzheimer's.

###

Ben-Yehuda Greenwald integrated several fields of research into her work and was guided by experts in their fields - Prof. Roni Kohen, the Director of the School of Pharmacy, The Institute of Drug Research in the Hebrew University's Faculty of Medicine; Prof. Shmuel Ben-Sasson from the Department of Developmental Biology and Cancer Research at The Institute for Medical Research Israel-Canada in the Hebrew University's Faculty of Medicine; and Prof. Havazelet Bianco-Peled from the Department of Chemical Engineering at the Technion-Israel Institute of Technology.

She conducted her study at the David and Ines Myers Skin Research Laboratory at The Institute for Drug Research in the School of Pharmacy at The Hebrew University's Faculty of Medicine.

Media Contact

Avivit Delgoshen
avivit.delgoshen@mail.huji.ac.il
972-258-82904

 @HebrewU

http://new.huji.ac.il/en 

Avivit Delgoshen | EurekAlert!

Further reports about: Hebrew University Medicine Nanotechnology ROS enzymes skin skin conditions skin disease

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>