Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano vaccine for hepatitis B shows promise for third world

14.08.2008
Nanoemulsion could save more lives by removing current vaccines' drawbacks

Chronic hepatitis B infects 400 million people worldwide, many of them children. Even with three effective vaccines available, hepatitis B remains a stubborn, unrelenting health problem, especially in Africa and other developing areas. The disease and its complications cause an estimated 1 million deaths globally each year.

In many poor countries, refrigerated conditions required for the current vaccines are costly and hard to come by. It's often difficult in the field to keep needles and syringes sterile. The need to have people return for the three shots currently required also limits success.

Now, a new vaccine that avoids these drawbacks has moved a step closer to human trials. Health researchers hope it will make it possible to immunize large numbers of children and adults in Africa, Asia and South America efficiently and safely.

Scientists at the Michigan Nanotechnology Institute for Medicine and Biological Sciences at the University of Michigan report that a novel, needle-less method for getting an immunity-stimulating agent into the body has proved non-toxic and able to produce strong, sustained immune responses in animal studies. The vaccine is based on a super-fine emulsion of oil, water and surfactants placed in the nose.

The research was supported by the Grand Challenges in Global Health initiative, which is funded by the Bill & Melinda Gates Foundation, the Foundation for the National Institutes of Health, the Wellcome Trust and the Canadian Institutes of Health Research. The findings appear online in the journal PLoS ONE.

The nanoemulsion represents a new delivery method for an antigen already used in existing hepatitis B vaccines to activate the body's immune defenses.

"Our results indicate that needle-free nasal immunization, using a combination of nanoemulsion and hepatitis B antigen, could be a safe and effective hepatitis B vaccine, and also provide an alternative booster method for existing vaccines," says James R. Baker, Jr., M.D., the study's senior author and director of the institute. He also is Ruth Dow Doan Professor and allergy division chief in the U-M Department of Internal Medicine.

The nanoemulsion is made up of soybean oil, alcohol, water and detergents emulsified into droplets less than 400 nanometers in diameter.

The study suggests that the new type of hepatitis B vaccine will not have rigid cold storage requirements and could require fewer administrations than current vaccines, which require three shots given over a period of six months. Protective immunity with the new vaccine required only two immunizations in animals. The vaccine also avoids the risk of spreading needle-borne infections.

The nanoemulsion vaccine also avoids the temporary pain and redness that results after people get shots with the current vaccines, in which an irritating compound, alum, is used as an adjuvant, or enhancer of a vaccine's effect. There was no local inflammation at the nasal site of administration with the new vaccine.

This finding may be significant, because one of the major concerns for nasal administration of vaccines is that they can find their way to the olfactory bulb in the brain and cause side effects, says Paul E. Makidon, D.V.M., co-first author of the study and a U-M research fellow. "Our studies, however, indicate no inflammation and no evidence of the vaccine in the olfactory bulb," he says.

Baker's team has published earlier studies affirming the promise of nasal nanoemulsions as a strategy for smallpox, influenza, anthrax and HIV vaccines. The nanoemulsion technology is patented by U-M and licensed to Ann Arbor-based NanoBio Corporation. Baker is a founder and equity holder of NanoBio.

Research details:

The research team determined effective doses of the antigen and nanoemulsion. In results obtained in mice, rats and guinea pigs, the nanoemulsion vaccine proved effective at producing three types of immunity: systemic, mucosal and cellular. Further toxicity studies in rodents and dogs showed the vaccine was safe and well-tolerated.

The vaccine was as effective as current hepatitis B vaccines in eliciting systemic protective antibodies in the blood of animals. The nanoemulsion acted as an effective adjuvant, without the need for a traditional adjuvant or inflammatory compound as in the current hepatitis B vaccines.

In addition, the nanoemulsion vaccine produced sustained cellular immunity in Th1 cells, which could make the vaccine useful in treating people with chronic hepatitis B whose own cellular immune responses are inadequate.

The animals given the nasal nanoemulsion in the study also activated a third type of immunity, mucosal immunity, which is gaining recognition among immunologists as a key first-line response to infectious agents in diseases such as hepatitis B where mucosal tissues are involved in transmission. Baker and his team found the same effect of activating mucosal immunity that was seen in their previous studies of other nanoemulsion-based vaccines.

The researchers tested whether the vaccine could remain stable and effective even if not refrigerated. They found the nanoemulsion vaccine retained its effectiveness for six months when kept at 25 degrees Celsius (77 degrees Fahrenheit), and even was stable and effective for six weeks at 40 degrees C (104 degrees F). This suggests that refrigeration will not be needed for the final distribution of the vaccine in developing countries, making it easier to vaccinate underserved people.

Current studies are focused on developing the preclinical data required to enter human trials, Baker says. The researchers hope that the first human trial can begin within a year.

Anne Rueter | EurekAlert!
Further information:
http://www.umich.edu
http://dx.plos.org/10.1371/journal.pone.0002954

Further reports about: Chronic hepatitis B Nanoemulsion hepatitis B vaccines

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>