Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Muscle mass in elderly boosted by combining resistance exercise and blood flow restriction

For years, researchers have known that resistance exercise training –such as weightlifting, in which muscles work against gravity or another force — can be one of the most effective ways to fight the debilitating muscle loss caused by aging.

But many older people are unable to get the full benefits of such training because they suffer from conditions such as arthritis that prevent them from lifting enough weight to stimulate muscle growth. And, while younger men and women continue to produce significant amounts of muscle protein for hours after a resistance exercise workout, seniors receive a much smaller post-workout benefit.

Now, though, University of Texas Medical Branch at Galveston researchers have determined that moderately and temporarily restricting the flow of blood through muscles — a practice adopted by bodybuilders who noticed that it made light weights feel heavier— can be combined with low-level resistance exercise training to produce muscle-mass increases in older men.

"We think that this may be a novel treatment for older people who need to bring their muscle mass back up," said UTMB physical therapy professor Blake Rasmussen, senior author of a paper on the investigation ("Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men") appearing in the May issue of the Journal of Applied Physiology. "It could also be used for patients who have had surgery and aren't capable of lifting enough weight to keep their muscles in shape, or for people who have arthritis or other conditions that make lifting heavy weights a problem."

The UTMB investigators studied changes in the thigh muscles of seven older men (average age 70) when they performed four minutes of low-resistance leg extension exercises both with and without inflatable cuffs that reduced blood flow out of the muscles. Muscle protein synthesis was measured in each of the men by monitoring changes in a chemical tracer infused into the bloodstream. In addition, a series of biopsies yielded muscle samples that were analyzed to track alterations in biochemical pathways critical to muscle growth.

"We saw that when we put the cuffs on, they responded similarly to young people doing traditional high-intensity resistance exercise," said UTMB graduate student Christopher Fry, the lead author of the paper. "The low-intensity exercise produced increases in protein synthesis, and activated two cellular pathways that stimulate protein synthesis and muscle growth in the post-exercise period."

Exactly how restricting blood flow in the muscles generated these effects remains unknown, although Rasmussen and Fry speculated that either an improved ability to activate Type II muscle fibers or a response to the sudden surge of blood into the muscles when the cuffs were released could be responsible. Whatever the mechanism, Rasmussen said, "we think it's an exciting potential new rehabilitation tool."

"You could use this following ACL knee surgery or hip fracture surgery, for example," Rasmussen said. "In the first few weeks after ACL surgery, the joint just won't allow you to lift heavy weight. So instead, you could use a really light weight with a restriction cuff, which may prevent the muscle loss that you normally see following knee surgery."

Other authors of the paper included graduate student Erin Glynn, assistant professor Micah Drummond, postdoctoral fellow Kyle Timmerman, research scientist Shaheen Dhanani and professor Elena Volpi, as well as Satoshi Fujita and Takashi Abe of the University of Tokyo. The National Institute of Arthritis and Musculoskeletal and Skin Diseases, UTMB's Institute for Translational Sciences Clinical Research Center, the UTMB Center for Rehabilitation Sciences and Sato Sports Plaza provided support for this research.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144

Jim Kelly | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>