Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle mass in elderly boosted by combining resistance exercise and blood flow restriction

17.05.2010
For years, researchers have known that resistance exercise training –such as weightlifting, in which muscles work against gravity or another force — can be one of the most effective ways to fight the debilitating muscle loss caused by aging.

But many older people are unable to get the full benefits of such training because they suffer from conditions such as arthritis that prevent them from lifting enough weight to stimulate muscle growth. And, while younger men and women continue to produce significant amounts of muscle protein for hours after a resistance exercise workout, seniors receive a much smaller post-workout benefit.

Now, though, University of Texas Medical Branch at Galveston researchers have determined that moderately and temporarily restricting the flow of blood through muscles — a practice adopted by bodybuilders who noticed that it made light weights feel heavier— can be combined with low-level resistance exercise training to produce muscle-mass increases in older men.

"We think that this may be a novel treatment for older people who need to bring their muscle mass back up," said UTMB physical therapy professor Blake Rasmussen, senior author of a paper on the investigation ("Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men") appearing in the May issue of the Journal of Applied Physiology. "It could also be used for patients who have had surgery and aren't capable of lifting enough weight to keep their muscles in shape, or for people who have arthritis or other conditions that make lifting heavy weights a problem."

The UTMB investigators studied changes in the thigh muscles of seven older men (average age 70) when they performed four minutes of low-resistance leg extension exercises both with and without inflatable cuffs that reduced blood flow out of the muscles. Muscle protein synthesis was measured in each of the men by monitoring changes in a chemical tracer infused into the bloodstream. In addition, a series of biopsies yielded muscle samples that were analyzed to track alterations in biochemical pathways critical to muscle growth.

"We saw that when we put the cuffs on, they responded similarly to young people doing traditional high-intensity resistance exercise," said UTMB graduate student Christopher Fry, the lead author of the paper. "The low-intensity exercise produced increases in protein synthesis, and activated two cellular pathways that stimulate protein synthesis and muscle growth in the post-exercise period."

Exactly how restricting blood flow in the muscles generated these effects remains unknown, although Rasmussen and Fry speculated that either an improved ability to activate Type II muscle fibers or a response to the sudden surge of blood into the muscles when the cuffs were released could be responsible. Whatever the mechanism, Rasmussen said, "we think it's an exciting potential new rehabilitation tool."

"You could use this following ACL knee surgery or hip fracture surgery, for example," Rasmussen said. "In the first few weeks after ACL surgery, the joint just won't allow you to lift heavy weight. So instead, you could use a really light weight with a restriction cuff, which may prevent the muscle loss that you normally see following knee surgery."

Other authors of the paper included graduate student Erin Glynn, assistant professor Micah Drummond, postdoctoral fellow Kyle Timmerman, research scientist Shaheen Dhanani and professor Elena Volpi, as well as Satoshi Fujita and Takashi Abe of the University of Tokyo. The National Institute of Arthritis and Musculoskeletal and Skin Diseases, UTMB's Institute for Translational Sciences Clinical Research Center, the UTMB Center for Rehabilitation Sciences and Sato Sports Plaza provided support for this research.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>