Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model may lead to new therapies for degenerative diseases

16.05.2011
Most degenerative diseases begin with a gradual loss of specific cell types that progresses, eventually leading to symptoms.

For example, in type I diabetes, hyperglycemia commonly develops when approximately 80 percent of the beta cells in the pancreas are lost; in Parkinson's disease, motor dysfunction typically begins when neurons in a certain portion of the brain are decreased by 70 to 80 percent.

Finding ways to stop early cell destruction is vital, but methods to do so have proven challenging because of limitations of models for early stages of cell loss.

A research team led by Albert Edge, Ph.D., principal investigator at the Massachusetts Eye and Ear Infirmary's Eaton-Peabody Laboratory and associate professor at Harvard Medical School, have engineered a new mouse that that can be used for research on degenerative disease. Their paper describing the findings, "Cre/lox mediated in vivo mosaic cell ablation to generate novel mouse models of degenerative disease," was published on May 16 in the Journal of Clinical Investigation.

The "Mos-iCsp3" mouse (for "mosaic inducible caspase 3 mouse") is engineered so that administration of a drug initiates destruction of cells in specifically designated tissues, explains Dr. Edge. Selection of the cell type to be killed is achieved by mating the Mos-iCsp3 mouse with a "Cre" mouse in which an enzyme called Cre recombinase is contained in selected tissues. Any cell that contains the enzyme begins to produce caspase 3. This protein, a so-called "cell death" protein, is subsequently kept in an inactive form until the mouse is treated with a drug that activates caspase 3. Upon treatment with the drug the selected cells die. Several hundred Cre mice exist and cover a broad array of cell types.

"The mouse provides a way to study degenerative diseases and a model organism in which to develop therapies for those diseases," Dr. Edge said. "We targeted inner ear hair cells, beta cells in the pancreas, and epidermal cells. We found that whereas the beta cells and skin cells showed some regeneration in response to cellular loss, inner ear hair cells were not capable of regeneration and thus hair cell death caused partial deafness. The mouse will expedite our efforts to replace inner ear cells lost in deafness."

About the Eaton-Peabody Laboratory

With a staff of 100, including scientists, physicians and engineers, the Eaton-Peabody Laboratory is one of the world's largest basic research facilities dedicated to the study of hearing and deafness. The laboratory is located at the Massachusetts Eye and Ear Infirmary, an international center for treatment and research and a teaching hospital of Harvard Medical School.

About Mass. Eye and Ear Founded in 1824, Mass. Eye and Ear is an independent specialty hospital, an international center for treatment and research, and a teaching affiliate of the Harvard Medical School. Information about Mass. Eye and Ear is available on its website at www.MassEyeAndEar.org.

Vannessa Carrington | idw
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>