Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers find new target to improve pain management

08.09.2010
Mount Sinai researchers identify new therapeutic target to improve pain management after chronic morphine administration

Researchers from Mount Sinai School of Medicine have discovered a major mechanism underlying the development of tolerance to chronic morphine treatment. The discovery may help researchers find new therapies to treat chronic pain, and reduce tolerance and side effects associated with morphine use. The findings are published in the July 20th issue of Science Signaling.

Overcoming tolerance to morphine after chronic administration has been a persistent problem in treating patients with severe pain, including those with cancer and neuropathy and recovering from major surgeries. After a week of morphine use, its effectiveness decreases as patients build tolerance, and patients also experience negative side effects like addiction and constipation. Researchers at Mount Sinai have identified changes in the brain and spinal cord that occur during the development of morphine tolerance, providing a therapeutic target for preventing it and allowing for the identification of new therapies to treat pain with fewer side effects.

Led by Lakshmi Devi, PhD, Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine, the research team studied changes in the abundance and signaling properties of a protein complex containing two different types of opioid receptors in the brains of mice. The protein complex, called a heterodimer, is made up of the mu receptor and one other opioid receptor called the delta receptor. After using a clever strategy to develop selective antibodies for the detection of the heterodimer in vivo, they found that this protein complex excessively accumulates in areas of the brain that process pain. Previous studies from Dr. Devi's lab have shown that signaling through this complex is associated with a reduced responsiveness to morphine over five days of treatment. Therefore, it is likely that the accumulation of this complex in pain-processing brain regions may be the cause of the development of morphine tolerance.

"We found that the brain selectively responds to chronic morphine by increasing heteromer abundance, blocking individual receptors from signaling the analgesic response to morphine," said Dr. Devi. "Now that we have identified a signaling complex associated with morphine tolerance, we can develop a drug that will block the delta receptor within this complex, allowing the mu receptor to signal for pain reduction." Dr. Devi's team will also work to find a drug that binds to the mu-delta receptor complex so that they can study how this receptor complex presents itself in other diseases as well.

"This finding may apply to more than just opiates," continued Dr. Devi. "We look forward to studying the behavior of similar receptor complexes in diseases like obesity, alcohol-induced liver fibrosis, and neuropathic pain itself."

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org. Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>