Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai researchers find new target to improve pain management

08.09.2010
Mount Sinai researchers identify new therapeutic target to improve pain management after chronic morphine administration

Researchers from Mount Sinai School of Medicine have discovered a major mechanism underlying the development of tolerance to chronic morphine treatment. The discovery may help researchers find new therapies to treat chronic pain, and reduce tolerance and side effects associated with morphine use. The findings are published in the July 20th issue of Science Signaling.

Overcoming tolerance to morphine after chronic administration has been a persistent problem in treating patients with severe pain, including those with cancer and neuropathy and recovering from major surgeries. After a week of morphine use, its effectiveness decreases as patients build tolerance, and patients also experience negative side effects like addiction and constipation. Researchers at Mount Sinai have identified changes in the brain and spinal cord that occur during the development of morphine tolerance, providing a therapeutic target for preventing it and allowing for the identification of new therapies to treat pain with fewer side effects.

Led by Lakshmi Devi, PhD, Professor of Pharmacology and Systems Therapeutics at Mount Sinai School of Medicine, the research team studied changes in the abundance and signaling properties of a protein complex containing two different types of opioid receptors in the brains of mice. The protein complex, called a heterodimer, is made up of the mu receptor and one other opioid receptor called the delta receptor. After using a clever strategy to develop selective antibodies for the detection of the heterodimer in vivo, they found that this protein complex excessively accumulates in areas of the brain that process pain. Previous studies from Dr. Devi's lab have shown that signaling through this complex is associated with a reduced responsiveness to morphine over five days of treatment. Therefore, it is likely that the accumulation of this complex in pain-processing brain regions may be the cause of the development of morphine tolerance.

"We found that the brain selectively responds to chronic morphine by increasing heteromer abundance, blocking individual receptors from signaling the analgesic response to morphine," said Dr. Devi. "Now that we have identified a signaling complex associated with morphine tolerance, we can develop a drug that will block the delta receptor within this complex, allowing the mu receptor to signal for pain reduction." Dr. Devi's team will also work to find a drug that binds to the mu-delta receptor complex so that they can study how this receptor complex presents itself in other diseases as well.

"This finding may apply to more than just opiates," continued Dr. Devi. "We look forward to studying the behavior of similar receptor complexes in diseases like obesity, alcohol-induced liver fibrosis, and neuropathic pain itself."

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org. Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>