Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More light on cancer

20.05.2016

Scientists created nanoparticles to highlight cancer cells

The group of Russian and French researchers, with the participation of scientists from the Lomonosov Moscow State University, has succeeded to synthesize nanoparticles of ultrapure silicon, which exhibited the property of efficient photoluminescence, i.e., secondary light emission after photoexcitation. These particles were able to easily penetrate into cancer cells and it allowed to use them as luminescent markers in the early diagnosis of cancer and in treatments of this disease. The article was published in the journal Scientific Reports.


These are confocal fluorescence microscopy images of CF2Th cancer cells incubated with LA-Si NPs.

Credit: Victor Timoshenko/Scientific Reports

Investigations to find methods for synthesizing such nanoparticles are actively conducted in many laboratories around the world, however, according to one of the study co-authors, professor of the Physics Department of the Lomonosov Moscow State University, Victor Timoshenko, the particles' quality was poor, mainly because they were synthesized by chemical reactions in acid solutions.

'The obtained particles were not sufficiently pure,' he says. 'By-products of the chemical reactions made them toxic. Furthermore, these nanoparticles had a form, which was far from a sphere, and it does not contribute to the appearance of the photoluminescence. These two drawbacks severely restricted their applications'.

To get rid of these shortcomings, the researchers decided to use a different method, with no positive results previously -- the so-called laser ablation, i.e. the ejection of atoms from the target with a laser beam, so that the torn atoms would form a nanocrystal then.

The problem here was that the atoms torn in this case often did not combine to particles, but to some arbitrary layers, and even if the nanoparticles were obtained, they did not shine. It happened as either the nanoparticles were too large, or they cool down too quickly and did not have time to form high-quality nanocrystals. In other words, it was necessary to warm them, to encourage crystallization for a very short time.

'For that purpose, we decided to use high-intensity, short laser pulses,' Professor Timoshenko says. 'They not only ejected the silicon atoms from the target, but additionally ionized them. The emitted electrons led to the ionization of helium atoms, in which atmosphere it all was happening.

In a very short time of nanoseconds something of a microwave kind appeared, laser plasma formed the conditions that allowed the atoms to sinter into spherical nano-crystals. These beads falling onto the surface aggregated as a fluffy layer, which subsequently could be readily dispersed in water'.

These nanoparticles had spherical shape and were just the right size -- 2-4 nanometers in diameter -- which, as physicists have well known, provided efficient photoluminescence where each falling photon is balanced with one ejected. In contrast to nanoparticles obtained by chemical etching, they were deprived of toxic additives. And most importantly, as demonstrated by biological experiments, they could easily penetrate into the cells.

Moreover, into the cancer cells such nanospheres penetrate much more readily than into the healthy ones. This is due to the fact that the cancer cells are always ready to divide, always absorbs everything around to give rise to daughter cells. According to Victor Timoshenko, depending on the type of cells, cancer cells typically absorb nanoparticles 20-30% percent more efficiently than the healthy ones, and this can already lay a basis for the diagnostic of cancer at its' early stage.

'Our main achievement was that we produced such nanoparticles and established that they easily penetrate into cancer cells,' Victor Timoshenko said. 'The problem of the diagnostic is a separate task, which is solved simultaneously by biologists, with our participation. You can, for example, replace the analysis of biopsy, a fairly long and not too reliable "yes-no" test, in which the cancer cells in the body are detected by the fact whether a nanoparticle penetrated a tissue sample, or it did not.

There are also non-invasive diagnostic methods. The photoluminescent light emitted from the nanoparticles in this case is difficult to use, but they can be activated by other means, for example, ultrasound or radio frequency electromagnetic waves'.

The main advantage of the obtained nanoparticles is that they are completely non-toxic and easily excreted. But their advantage is not reduced to that. They also can attach specific substance or group of biomolecules (e.g., antibodies) to their surface, allowing us to target them to penetration into cancer cells and thereby increase the efficiency of diagnosis. According to Victor Timoshenko, in the future those obtained nanoparticles will also have the drug attached, that will not only detect cancer, but also help to conduct a local chemotherapy or radiotherapy on the cellular level.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>