Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular subtypes and genetic alterations may determine response to lung cancer therapy

14.05.2012
Cancer therapies targeting specific molecular subtypes of the disease allow physicians to tailor treatment to a patient's individual molecular profile. But scientists are finding that in many types of cancer the molecular subtypes are more varied than previously thought and contain further genetic alterations that can affect a patient's response to therapy.

A UNC-led team of scientists has shown for the first time that lung cancer molecular subtypes correlate with distinct genetic alterations and with patient response to therapy. These findings in pre-clinical models and patient tumor samples build on their previous report of three molecular subtypes of non-small cell lung cancer and refines their molecular analysis of tumors.

Their findings were published in the May 10, 2012 online edition of the Public Library of Science One.

Study senior author, Neil Hayes, MD, MPH, associate professor of medicine, says, "It has been known for about a decade of using gene expression arrays that "molecular subtypes" exist. These subtypes have molecular "fingerprints" and frequently have different clinical outcomes. However, the underlying etiologies of the subtypes have not been recognized. Why do tumors form subtypes?

"Our study shows that tumor subtypes have different underlying alterations of DNA as part of the difference. These differences are further evidence of the importance of subtypes and the way we will use them. For example, the mutations are different which may imply much more ability to target than previously recognized. Also, we are starting to get a suggestion that these subtypes may reflect different cells of origin that rely on different cancer pathways. This is further unlocking the diversity of this complex disease." Hayes is a member of UNC Lineberger Comprehensive Cancer Center.

The team first defined and reported in 2006 on three lung cancer molecular subtypes, named according to their genetic pattern – bronchoid, squamoid and magnoid.

In this PLoS One paper they sought to determine if distinct genetic mutations co-occur with each specific molecular subtypes. They found that specific genetic mutations were associated with each subtype and that these mutations may have independent predictive value for therapeutic response.

Additional UNC authors are: Matthew Wilkerson, PhD; Xiaoying Yin, MD; Vonn Walter, PhD: Ni Zhao, MS; Christopher Cabanski, PhD; Michele Hayward, RD; Ryan Miller, MD, PhD; Alden Parsons, MD; Leigh Thorne, MD; Benjamin Haithcock, MD; Nirmal Veeramachaneni, MD; William Funkhouser, MD; Scott Randell, PhD; and Charles Perou, PhD. Additional authors are from the University of Utah Health Sciences Center and Pittsburgh Cancer Institute.

Funding for the study was provided by the National Cancer Institute and the National Heart, Lung and Blood Institute, member institutes of the National Institutes of Health; Joan's Legacy Foundation; and a UNC Lineberger Clinical/Translational Developmental Research Award.

Dianne G. Shaw | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Cancer Molecular Target UNC genetic mutation health services lung cancer

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>