Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'kiss of death' flags pathogens

29.09.2015

Pockets of bad bugs marked to summon cleanup crew

Many bugs that make us sick -- bacteria, viruses, fungi and parasites -- hide out in our cells in protective little bubbles called vacuoles. To clear an infection, the immune system must recognize and destroy these vacuoles while leaving the rest of the living cell intact.


The body uses a molecule called ubiquitin, here shown in red inside the box, to tag little pockets of pathogen, called vacuoles, as they bloom on the surface of a cell. The vacuole in this image is full of Chlamydia trachomatis (shown in green), the bacteria which cause a common sexually transmitted infection, but the ubiquitin molecules have marked the vacuole for destruction by the immune system.

Credit: Dr. Arun Haldar

Now, researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."

The finding could lead to new therapeutic strategies to boost the immune system's response to the pathogens responsible for a long list of human ailments, including tuberculosis, salmonella, chlamydia, toxoplasmosis and malaria. The study appears the week of Sept. 28 in the Proceedings of the National Academy of Sciences.

"To get rid of these pathogens, the immune system essentially has to find a needle in a haystack," said Jörn Coers, Ph.D., senior author of the study and assistant professor of molecular genetics and microbiology at Duke University School of Medicine. "It has to target a single microbe, in a vacuole, in an ocean of other membranes, floating around inside the cell. We found that the immune system accomplishes this feat by painting the vacuole with a coat of ubiquitin, which allows for the recruitment of all these other factors that viciously attack the vacuole and eliminate the pathogen inside."

When pathogens first enter a host cell, they take part of the plasma membrane with them, wrapping it around themselves like a cloak to mask their true identity. Eventually, a healthy immune system discovers the invasion and puts special molecules called guanylate binding proteins (GBPs) on high alert. These proteins specifically bind to the membranes of the pathogen-containing vacuoles and eliminate the infiltrators. Coers and his colleagues wanted to figure out how the GBPs know which membrane-bound structures to go after.

The researchers first conducted a large-scale screen for proteins involved in the clearance of pathogens. To their surprise, their search turned up a few proteins that play a role in ubiquitination, the process whereby the body's own doomed proteins are marked for destruction with the addition of ubiquitin tags. No previous studies had ever drawn a connection between ubiquitin and the destruction and elimination of pathogen-containing vacuoles by GBPs.

Coers and his colleagues decided to look for these ubiquitin tags on vacuoles containing two different microorganisms: Chlamydia trachomatis, the causative agent of the most common sexually transmitted bacterial infection, and Toxoplasma gondii, the single-celled parasite that causes toxoplasmosis.

First, they "primed" the cells with cytokines, the signaling molecules that kick the immune system into action. Then, they stained the cells with a red dye that was specific for the ubiquitin protein.

"All of a sudden we saw these beautiful rings of ubiquitin that nicely decorated the outsides of the pathogen-containing vacuoles," said Coers. He and his colleagues went on to identify the molecular players responsible both for attaching the ubiquitin tags and for escorting the GBPs to the surface of the vacuole so they can coordinate an attack.

The researchers also showed that highly virulent strains of Chlamydia and Toxoplasma contain special factors that block the addition of these ubiquitin tags. Because their vacuoles don't get ubiquitinated, the GBPs fail to recognize them as the enemy.

In the future, the researchers would like to determine what other tricks pathogens use to evade the immune response. Once they have a clear idea of what makes some of these pathogens more dangerous, they can design therapeutics to render these hypervirulent strains more susceptible to the host response.

###

The research was supported by an American Heart Association Predoctoral Award (12PRE10440003), a National Science Foundation Predoctoral award, a Medical Research Council Studentship, a Boehringer Ingelheim Fonds PhD Fellowship, a Wellcome Trust Development Award, a Medical Research Council Grant (MC)UP_1202/12), and a National Institute Health Grant (R01AI103197).

CITATION: "Ubiquitin Systems Mark Pathogen-Containing Vacuoles As Targets For Host Defense By Guanylate Binding Proteins," Arun K. Haldar, Clémence Foltz, Ryan Finethy, Anthony S. Piro, Eric M. Feeley, Danielle M. Pilla-Moffett, Masaki Komatsu, Eva-Maria Frickel, and Jörn Coers. PNAS, Sept. 28, 2015. DOI: 10.1073/pnas.1515966112

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

Further reports about: Toxoplasma death immune immune system pathogens proteins recognize toxoplasmosis vacuole vacuoles

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>