Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular 'kiss of death' flags pathogens

29.09.2015

Pockets of bad bugs marked to summon cleanup crew

Many bugs that make us sick -- bacteria, viruses, fungi and parasites -- hide out in our cells in protective little bubbles called vacuoles. To clear an infection, the immune system must recognize and destroy these vacuoles while leaving the rest of the living cell intact.


The body uses a molecule called ubiquitin, here shown in red inside the box, to tag little pockets of pathogen, called vacuoles, as they bloom on the surface of a cell. The vacuole in this image is full of Chlamydia trachomatis (shown in green), the bacteria which cause a common sexually transmitted infection, but the ubiquitin molecules have marked the vacuole for destruction by the immune system.

Credit: Dr. Arun Haldar

Now, researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."

The finding could lead to new therapeutic strategies to boost the immune system's response to the pathogens responsible for a long list of human ailments, including tuberculosis, salmonella, chlamydia, toxoplasmosis and malaria. The study appears the week of Sept. 28 in the Proceedings of the National Academy of Sciences.

"To get rid of these pathogens, the immune system essentially has to find a needle in a haystack," said Jörn Coers, Ph.D., senior author of the study and assistant professor of molecular genetics and microbiology at Duke University School of Medicine. "It has to target a single microbe, in a vacuole, in an ocean of other membranes, floating around inside the cell. We found that the immune system accomplishes this feat by painting the vacuole with a coat of ubiquitin, which allows for the recruitment of all these other factors that viciously attack the vacuole and eliminate the pathogen inside."

When pathogens first enter a host cell, they take part of the plasma membrane with them, wrapping it around themselves like a cloak to mask their true identity. Eventually, a healthy immune system discovers the invasion and puts special molecules called guanylate binding proteins (GBPs) on high alert. These proteins specifically bind to the membranes of the pathogen-containing vacuoles and eliminate the infiltrators. Coers and his colleagues wanted to figure out how the GBPs know which membrane-bound structures to go after.

The researchers first conducted a large-scale screen for proteins involved in the clearance of pathogens. To their surprise, their search turned up a few proteins that play a role in ubiquitination, the process whereby the body's own doomed proteins are marked for destruction with the addition of ubiquitin tags. No previous studies had ever drawn a connection between ubiquitin and the destruction and elimination of pathogen-containing vacuoles by GBPs.

Coers and his colleagues decided to look for these ubiquitin tags on vacuoles containing two different microorganisms: Chlamydia trachomatis, the causative agent of the most common sexually transmitted bacterial infection, and Toxoplasma gondii, the single-celled parasite that causes toxoplasmosis.

First, they "primed" the cells with cytokines, the signaling molecules that kick the immune system into action. Then, they stained the cells with a red dye that was specific for the ubiquitin protein.

"All of a sudden we saw these beautiful rings of ubiquitin that nicely decorated the outsides of the pathogen-containing vacuoles," said Coers. He and his colleagues went on to identify the molecular players responsible both for attaching the ubiquitin tags and for escorting the GBPs to the surface of the vacuole so they can coordinate an attack.

The researchers also showed that highly virulent strains of Chlamydia and Toxoplasma contain special factors that block the addition of these ubiquitin tags. Because their vacuoles don't get ubiquitinated, the GBPs fail to recognize them as the enemy.

In the future, the researchers would like to determine what other tricks pathogens use to evade the immune response. Once they have a clear idea of what makes some of these pathogens more dangerous, they can design therapeutics to render these hypervirulent strains more susceptible to the host response.

###

The research was supported by an American Heart Association Predoctoral Award (12PRE10440003), a National Science Foundation Predoctoral award, a Medical Research Council Studentship, a Boehringer Ingelheim Fonds PhD Fellowship, a Wellcome Trust Development Award, a Medical Research Council Grant (MC)UP_1202/12), and a National Institute Health Grant (R01AI103197).

CITATION: "Ubiquitin Systems Mark Pathogen-Containing Vacuoles As Targets For Host Defense By Guanylate Binding Proteins," Arun K. Haldar, Clémence Foltz, Ryan Finethy, Anthony S. Piro, Eric M. Feeley, Danielle M. Pilla-Moffett, Masaki Komatsu, Eva-Maria Frickel, and Jörn Coers. PNAS, Sept. 28, 2015. DOI: 10.1073/pnas.1515966112

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

Further reports about: Toxoplasma death immune immune system pathogens proteins recognize toxoplasmosis vacuole vacuoles

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>