Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular hub links obesity, heart disease to high blood pressure

12.04.2013
Targeting pathway may lead to better hypertension treatments for at-risk patients
Obesity, heart disease, and high blood pressure (hypertension) are all related, but understanding the molecular pathways that underlie cause and effect is complicated.

A new University of Iowa study identifies a protein within certain brain cells as a communications hub for controlling blood pressure, and suggests that abnormal activation of this protein may be a mechanism that links cardiovascular disease and obesity to elevated blood pressure.

"Cardiovascular diseases are the leading cause of death worldwide, and hypertension is a major cardiovascular risk factor," says Kamal Rahmouni, UI associate professor of pharmacology and internal medicine, and senior study author. "Our study identifies the protein called mTORC1 in the hypothalamus as a key player in the control of blood pressure. Targeting mTORC1 pathways may, therefore, be a promising strategy for the management of cardiovascular risk factors."

The hypothalamus is a small region of the brain that is responsible for maintaining normal function for numerous bodily processes, including blood pressure, body temperature, and glucose levels. Signaling of mTORC1 protein in the hypothalamus has previously been shown to affect food intake and body weight.

The new study, which was published April 2 in the journal Cell Metabolism, shows that the mTORC1 protein is activated by small molecules and hormones that are associated with obesity and cardiovascular disease, and this activation leads to dramatic increases in blood pressure.

Leucine is an amino acid that we get from food, which is known to activate mTORC1. The UI researchers showed that activating mTORC1 in rat brains with leucine increased activity in the nerves that connect the brain to the kidney, an important organ in blood pressure control. The increased nerve activity was accompanied by a rise in blood pressure. Conversely, blocking this mTORC1 activation significantly blunted leucine’s blood pressure-raising effect.

This finding may have direct clinical relevance as elevated levels of leucine have been correlated with an increased risk of high blood pressure in patients with cardiovascular disease.

"Our new study suggests a mechanism by which leucine in the bloodstream might increase blood pressure,” Rahmouni says.

Previous work has also suggested that mTORC1 is a signaling hub for leptin, a hormone produced by fat cells, which has been implicated in obesity-related hypertension.

Rahmouni and his colleagues showed that leptin activates mTORC1 in a specific part of the hypothalamus causing increased nerve activity and a rise in blood pressure. These effects are blocked by inhibiting activation of mTORC1.

“Our study shows that when this protein is either activated or inhibited in a very specific manner, it can cause dramatic changes in blood pressure,” Rahmouni says. "Given the importance of this protein for the control of blood pressure, any abnormality in its activity might explain the hypertension associated with certain conditions like obesity and cardiovascular disease."

Rahmouni and his team hope that uncovering the details of the pathways linking mTORC1 activation and high blood pressure might lead to better treatments for high blood pressure in patients with cardiovascular disease and obesity.

The research was funded by the National Institutes of Health (HL084207 and HL014388), the American Diabetes Association, and the Fraternal Order of Eagles Diabetes Research Center at the UI.

In addition to Rahmouni, the UI team included Shannon Harlan, Deng-Fu Guo, Donald Morgan, and Caroline Fernandes-Santos.

Contacts

Kamal Rahmouni, Pharmacology, 319-353-5256

Jennifer Brown, UI Health Care Marketing and Communications, 319-356-7124

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>