Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular hub links obesity, heart disease to high blood pressure

12.04.2013
Targeting pathway may lead to better hypertension treatments for at-risk patients
Obesity, heart disease, and high blood pressure (hypertension) are all related, but understanding the molecular pathways that underlie cause and effect is complicated.

A new University of Iowa study identifies a protein within certain brain cells as a communications hub for controlling blood pressure, and suggests that abnormal activation of this protein may be a mechanism that links cardiovascular disease and obesity to elevated blood pressure.

"Cardiovascular diseases are the leading cause of death worldwide, and hypertension is a major cardiovascular risk factor," says Kamal Rahmouni, UI associate professor of pharmacology and internal medicine, and senior study author. "Our study identifies the protein called mTORC1 in the hypothalamus as a key player in the control of blood pressure. Targeting mTORC1 pathways may, therefore, be a promising strategy for the management of cardiovascular risk factors."

The hypothalamus is a small region of the brain that is responsible for maintaining normal function for numerous bodily processes, including blood pressure, body temperature, and glucose levels. Signaling of mTORC1 protein in the hypothalamus has previously been shown to affect food intake and body weight.

The new study, which was published April 2 in the journal Cell Metabolism, shows that the mTORC1 protein is activated by small molecules and hormones that are associated with obesity and cardiovascular disease, and this activation leads to dramatic increases in blood pressure.

Leucine is an amino acid that we get from food, which is known to activate mTORC1. The UI researchers showed that activating mTORC1 in rat brains with leucine increased activity in the nerves that connect the brain to the kidney, an important organ in blood pressure control. The increased nerve activity was accompanied by a rise in blood pressure. Conversely, blocking this mTORC1 activation significantly blunted leucine’s blood pressure-raising effect.

This finding may have direct clinical relevance as elevated levels of leucine have been correlated with an increased risk of high blood pressure in patients with cardiovascular disease.

"Our new study suggests a mechanism by which leucine in the bloodstream might increase blood pressure,” Rahmouni says.

Previous work has also suggested that mTORC1 is a signaling hub for leptin, a hormone produced by fat cells, which has been implicated in obesity-related hypertension.

Rahmouni and his colleagues showed that leptin activates mTORC1 in a specific part of the hypothalamus causing increased nerve activity and a rise in blood pressure. These effects are blocked by inhibiting activation of mTORC1.

“Our study shows that when this protein is either activated or inhibited in a very specific manner, it can cause dramatic changes in blood pressure,” Rahmouni says. "Given the importance of this protein for the control of blood pressure, any abnormality in its activity might explain the hypertension associated with certain conditions like obesity and cardiovascular disease."

Rahmouni and his team hope that uncovering the details of the pathways linking mTORC1 activation and high blood pressure might lead to better treatments for high blood pressure in patients with cardiovascular disease and obesity.

The research was funded by the National Institutes of Health (HL084207 and HL014388), the American Diabetes Association, and the Fraternal Order of Eagles Diabetes Research Center at the UI.

In addition to Rahmouni, the UI team included Shannon Harlan, Deng-Fu Guo, Donald Morgan, and Caroline Fernandes-Santos.

Contacts

Kamal Rahmouni, Pharmacology, 319-353-5256

Jennifer Brown, UI Health Care Marketing and Communications, 319-356-7124

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>