Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model predicts blood glucose levels 30 minutes later

26.03.2014

A mathematical model created by Penn State researchers can predict with more than 90 percent accuracy the blood glucose levels of individuals with type 1 diabetes up to 30 minutes in advance of imminent changes in their levels -- plenty of time to take preventative action.

"Many people with type 1 diabetes use continuous glucose monitors, which examine the fluid underneath the skin," said Peter Molenaar, Distinguished Professor of Human Development and Family Studies and of psychology.

"But the glucose levels under the skin trail blood glucose levels from anywhere between 8 and 15 minutes. This is especially problematic during sleep. Patients may become hypoglycemic well before the glucose monitor alarm tells them they are hypoglycemic, and that could lead to death."

According to Molenaar, a person's blood glucose levels fluctuate in response to his or her insulin dose, meal intake, physical activity and emotional state. How great these fluctuations are depends on the individual.

"In the past decade, much progress has been made in the development of a mechanical 'artificial pancreas,' which would be a wearable or implantable automated insulin-delivery system consisting of a continuous glucose monitor, an insulin pump and a control algorithm closing the loop between glucose sensing and insulin delivery," he said.

"But creating an artificial pancreas that delivers the right amount of insulin at the right times has been a challenge because it is difficult to create a control algorithm that can handle the variability among individuals. Our new model is able to capture this variability. It predicts the blood glucose levels of individuals based on insulin dose and meal intake."

The researchers created a time-varying model estimated by the extended Kalman filtering technique. This model accounts for time-varying changes in glucose kinetics due to insulin and meal intake.

The team tested the accuracy of its model using an FDA-approved UVa/Padova simulator with 30 virtual patients and five living patients with type 1 diabetes. The results appeared online this week in the Journal of Diabetes Science and Technology.

"We learned that the dynamic dependencies of blood glucose on insulin dose and meal intake vary substantially in time within each patient and between patients," said Qian Wang, professor of mechanical engineering.

"The high prediction fidelity of our model over 30-minute intervals allows for the execution of optimal control of fast-acting insulin dose in real time because the initiation of insulin action has a delay of less than 30 minutes. Our approach outperforms standard approaches because all our model parameters are estimated in real time. Our model's configuration of recursive estimator and optimal controller will constitute an effective artificial pancreas."

###

Other authors on the paper include Saurabh Harsh, graduate student in mechanical engineering; Kenneth Freeman, research assistant in mechanical engineering; Jinyu Xie, graduate student in mechanical engineering; Jing Zhou, graduate student in mechanical engineering; Carol Gold, research scientist in human development and family studies; Mike Rovine, professor of human development and family studies; and Jan Ulbrecht, professor of biobehavioral health and medicine.

The National Institutes of Health, the National Science Foundation and the Penn State Center for Clinical and Translational Science Institute supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Technology algorithm artificial blood continuous levels pancreas skin variability

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>