Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model predicts blood glucose levels 30 minutes later

26.03.2014

A mathematical model created by Penn State researchers can predict with more than 90 percent accuracy the blood glucose levels of individuals with type 1 diabetes up to 30 minutes in advance of imminent changes in their levels -- plenty of time to take preventative action.

"Many people with type 1 diabetes use continuous glucose monitors, which examine the fluid underneath the skin," said Peter Molenaar, Distinguished Professor of Human Development and Family Studies and of psychology.

"But the glucose levels under the skin trail blood glucose levels from anywhere between 8 and 15 minutes. This is especially problematic during sleep. Patients may become hypoglycemic well before the glucose monitor alarm tells them they are hypoglycemic, and that could lead to death."

According to Molenaar, a person's blood glucose levels fluctuate in response to his or her insulin dose, meal intake, physical activity and emotional state. How great these fluctuations are depends on the individual.

"In the past decade, much progress has been made in the development of a mechanical 'artificial pancreas,' which would be a wearable or implantable automated insulin-delivery system consisting of a continuous glucose monitor, an insulin pump and a control algorithm closing the loop between glucose sensing and insulin delivery," he said.

"But creating an artificial pancreas that delivers the right amount of insulin at the right times has been a challenge because it is difficult to create a control algorithm that can handle the variability among individuals. Our new model is able to capture this variability. It predicts the blood glucose levels of individuals based on insulin dose and meal intake."

The researchers created a time-varying model estimated by the extended Kalman filtering technique. This model accounts for time-varying changes in glucose kinetics due to insulin and meal intake.

The team tested the accuracy of its model using an FDA-approved UVa/Padova simulator with 30 virtual patients and five living patients with type 1 diabetes. The results appeared online this week in the Journal of Diabetes Science and Technology.

"We learned that the dynamic dependencies of blood glucose on insulin dose and meal intake vary substantially in time within each patient and between patients," said Qian Wang, professor of mechanical engineering.

"The high prediction fidelity of our model over 30-minute intervals allows for the execution of optimal control of fast-acting insulin dose in real time because the initiation of insulin action has a delay of less than 30 minutes. Our approach outperforms standard approaches because all our model parameters are estimated in real time. Our model's configuration of recursive estimator and optimal controller will constitute an effective artificial pancreas."

###

Other authors on the paper include Saurabh Harsh, graduate student in mechanical engineering; Kenneth Freeman, research assistant in mechanical engineering; Jinyu Xie, graduate student in mechanical engineering; Jing Zhou, graduate student in mechanical engineering; Carol Gold, research scientist in human development and family studies; Mike Rovine, professor of human development and family studies; and Jan Ulbrecht, professor of biobehavioral health and medicine.

The National Institutes of Health, the National Science Foundation and the Penn State Center for Clinical and Translational Science Institute supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Technology algorithm artificial blood continuous levels pancreas skin variability

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!

30.09.2016 | Life Sciences

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>