Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model developed to improve combination vaccine accessibility worldwide

10.05.2011
Research addresses disparate availability of vaccines in developing countries

Combination vaccines for young children are commonly used in industrialized nations because they provide protection for multiple diseases in one single injection.

However, combination vaccines are prohibitively expensive for developing countries and may not available until several years later, or when market prices are more affordable.

As a result, the choice of vaccines used by developing and industrialized countries to immunize children against similar pediatric diseases is rapidly diverging.

A researcher at Rochester Institute of Technology has a solution. He developed a mathematical approach that could make complex combination vaccines more affordable for developing countries and financially more attractive to vaccine producers.

Ruben Proano, assistant professor in RIT's industrial and systems engineering department in the Kate Gleason College of Engineering, together with Sheldon Jacobson, professor of computer science at the University of Illinois, and Wenbo Zhang, a graduate engineering student at RIT, have developed a mathematical model that addresses key factors in providing affordable vaccines to developing countries.

One of the factors Proano addressed includes worldwide vaccine manufacturing capacity and its limitations. The use of production facilities and resources to make more profitable combination vaccines is reducing the production capacity once used to provide inexpensive vaccines for developing countries, he says.

"The U.N. Secretary-General Ban Ki-Moon has made immunization a key component of the U.N. Global Strategy for Women's and Children's Health, which aims to save 16 million women and children between 2011 and 2015. However, such goals may not be achieved unless the issue of access is addressed," says Proano. "We think that our research work highlights how a systems approach can provide opportunities that will benefit the buyers and the producers and will result in more incentives to improve vaccine availability."

His research team investigated the optimal price for combination vaccines that can be offered to different market segments. Making combination vaccines affordable and available to developing countries helps spread out the high research and development costs associated with vaccine development and could lower the price of vaccines in industrialized countries. Considering the global vaccine market as a system provides opportunities to make appropriate recommendations on the number of vaccines to purchase so that buyers and producers maximize savings and benefits.

Proano's research methodology uses mathematical optimization to solve problems that have implications for public policy, in particular to the supply chain of vaccines. This model considers each combination vaccine as a bundle of antigens that can be sold as a single item. He says it ensures that the solution satisfies vaccine demand in different countries and different immunization schedules.

"We use optimization models to recommend how many vaccine doses each market segment should buy from the different vaccine producers, and it also recommends the range of prices per dose that will result in savings for the buyer and that will be financially attractive to the producer," says Proano. "In a sense, we set the table for a more effective negotiation between producers and buyers."

NOTE: The paper, Making Combination Vaccines More Accessible to Low-Income Countries, was recently published in Omega, an international journal of operations management. The research was partly funded by the National Science Foundation and RIT's industrial and systems engineering department and the Kate Gleason College of Engineering.

Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, sustainability, and fine and applied arts, in addition to unparalleled support services for deaf and hard-of-hearing students. RIT enrolls 17,000 full- and part-time students in more than 200 career-oriented and professional programs, and its cooperative education program is one of the oldest and largest in the nation.

For two decades, U.S. News & World Report has ranked RIT among the nation's leading comprehensive universities. RIT is featured in The Princeton Review's 2011 edition of The Best 373 Colleges as well as its Guide to 286 Green Colleges. The Fiske Guide to Colleges 2011 includes RIT among more than 300 of the country's most interesting colleges and universities.

Michelle Cometa | EurekAlert!
Further information:
http://www.rit.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>