Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mode of action of new multiple sclerosis drug discovered

02.04.2014

Dimethyl fumarate inhibits inflammatory cell infiltration of the central nervous system through blockade of a specific receptor

Just a few short weeks ago, dimethyl fumarate was approved in Europe as a basic therapy for multiple sclerosis. Although its efficacy has been established in clinical studies, its underlying mode of action was still unknown, but scientists from the University of Lübeck and Bad Nauheim's Max Planck Institute for Heart and Lung Research have now managed to decode it. They hope that this knowledge will help them develop more effective therapeutic agents.


Section of mouse spinal cord under a fluorescence microscope. DMF works on the immune cells (red), which are responsible for damaging the nerve fibres. Cell nuclei appear as blue. Uni Lübeck

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that affects nerve fibres in the brain and spinal cord by damaging their protective myelin sheath. The cause of multiple sclerosis is unknown and the disease has no cure to date, but a range of treatments are available that can have a positive influence on its course.

Basic MS therapy to date generally involved beta interferons or the active substance glatiramer acetate. In both cases, the drug was administered by injections under the skin or into the muscle, which is a cause of considerable discomfort and annoyance to many patients.

By contrast, the active substance dimethyl fumarate (DMF), approved in Europe for MS treatment only a few weeks ago, brings a ray of hope to those affected since it can be taken in tablet form. The efficacy of DMF in clinical studies was at least comparable to that of the more established substances, while its side effects were moderate by comparison.

DMF has been in use for some twenty years as a successful treatment for psoriasis, but little was known about how it influences immune function. Scientists from Markus Schwaninger's research group at the Institute of Experimental and Clinical Pharmacology and Toxicology at the University of Lübeck and Nina Wettschureck from the Max Planck Institute for Heart and Lung Research in Bad Nauheim have explained significant aspects of how DMF works.

In their study, the researchers used a standardised mouse model of multiple sclerosis, whereby drugs trigger an autoimmune response, leading to characteristic reactions within days. In this way, they induced neurological deficits comparable to those observed in MS. "In the group we treated with DMF, the problems with motor function were considerably lower than in the control group," says Wettschureck.

The researchers uncovered the mode of action by treating genetically modified mice in the same way. "In mice that don't have the gene for the receptor called HCA2, DMF was unable to prevent the signs of paralysis," explains Schwaninger. This means that the HCA2 receptor must mediate the therapeutic effect of DMF.

HCA2 is a so-called G protein-coupled membrane receptor which occurs, among other places, on a certain type of white blood cells, neutrophil granulocytes. "In animals treated with DMF, the number of granulocytes that infiltrated the nervous system was much lower than in untreated animals. In animals without the HCA2 receptor, the number of invasive granulocytes remained equally high despite treatment with DMF," stated Wettschureck.

In other experiments involving cell cultures, the scientists found that activation of the HCA2 receptor is responsible for infiltration of the central nervous system by white blood cells. DMF blocks this infiltration, thereby preventing the associated inflammation. "Our study has enabled us to provide the first evidence that DMF's protective effect is due to the HCA2 receptor. However, we are not ruling out the possibility that there may also be other mechanisms," observed Wettschureck.

As a next step, the scientists want to find out why patients respond differently to treatment with DMF. "It may be that individual genetic differences influence the efficacy of DMF," states Schwaninger. Consequently, future therapies could be specifically designed for individual patients, an approach known as personalised medicine.

The researchers also intend to search for additional substances that bind to the HCA2 receptor. "Ideally, we would find a substance of comparable or even greater efficacy, but with fewer side effects," says Wettschureck. The colleagues in Lübeck and Bad Nauheim hope this will lead to the development of novel therapeutic agents for MS with an improved profile in terms of efficacy and adverse effects.


Original publication:

Hui Chen, Julian C. Assmann, Antje Krenz, Mahbubur Rahman, Myriam Grimm, Christian M. Karsten, Jörg Köhl, Stefan Offermanns, Nina Wettschureck, Markus Schwaninger: Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. The Journal of Clinical Investigation. doi:10.1172/JCI72151

Rüdiger Labahn | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-luebeck.de

Further reports about: DMF MS action animals granulocytes nervous protective receptor sclerosis therapeutic

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>