Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method makes it easier to treat prostate and pancreatic cancer

15.02.2012
Laser light in combination with certain drugs – known as photodynamic therapy – can destroy cancer tumours, but is today used mostly to cure skin cancer.

The reason that internal tumours are not treated with the method is that the technology does not exist to check that the precise amount of light is administered. However, software developed by researchers in atomic physics at Lund University in Sweden looks like being able to solve the problem.

“I think we are about to see a real breakthrough, both for us and for other research groups around the world who conduct research on cancer treatment using laser light”, says Johannes Swartling, Doctor of Atomic Physics at Lund University and Chief Technical Officer at SpectraCure, the company that is now developing the software.

The software’s unique feature is that it uses the optical fibres for more than simply emitting light. Intermittently they also gather information about the tumour, which they send back to the laser instrument.

“In this way, the software can continually calculate the optimal light dose and adjust it if necessary. The entire tumour must be removed, while damage to adjacent organs must be avoided”, says Johannes Swartling.

According to the researchers, the software could also be used with other light therapies that use LEDs or infra-red lasers.

Tests on prostate cancer patients in Sweden have shown that the method also works for internal tumours, and in the spring a clinical study on recurrent prostate cancer will begin in the US and Canada. An application for approval to carry out the study is pending. Meanwhile, the same laser light technology is being tested in the UK on pancreatic cancer.

“The advantage of laser light is that it appears that side effects can be minimised. With current treatment methods, prostate cancer patients who are cured risk both impotence and incontinence.”

In addition, traditional treatments entail a risk of cancer recurrence, says Johannes Swartling.

The international tests focus on adjusting dosage, guaranteeing safety and ensuring the effectiveness of treatment. If everything goes smoothly, SpectraCure hopes the method will be approved by the US Food and Drug Administration and Health Canada within a few years.

“This really could be revolutionary”, says Sune Svanberg, Professor of Laser Physics at Lund University and one of the researchers behind the technology.

“The new technology has great potential to help certain patient groups, for whom current treatment methods have major limitations”, says Professor Dr Katarina Svanberg, Department of Oncology, Lund University, who has been involved in the medical side of the development of the method.

How photodynamic therapy works
Before the procedure, the patient is given a light-activated drug, which has no effect without light. The drug spreads throughout the body, including to the area of the tumour. The patient then receives a local or general anaesthetic and the doctor inserts needles with optical fibres into the area affected. These channel light into the cancer tumour. When the light comes into contact with the light-activated drug, it reacts with the surrounding oxygen, causing the cells in the target area to die.

The hardware and software are based on patents developed by atomic physicists in Lund, led by Sune Svanberg and Stefan Andersson-Engels. The idea was to allow the same optical fibres used for treatment to be used for diagnostic measurements that make it possible to calculate the light dose required. The method was soon seen to be practicable and has been developed over the years, now by SpectraCure. The implementation has been carried out by programmers.

For more information, please contact: Stefan Andersson-Engels, Professor of Atomic Physics, +46 46 222 3121, Stefan.Andersson-Engels@fysik.lth.se , Johannes Swartling, +46 708 233680, jsw@spectracure.com or Jens Nilsen, CEO SpectraCure, +46 706 878712, jn@spectracure.com.

High resolution photographs of Stefan Andersson-Engels, Johannes Swartling and Sune Svanberg can be found in the Lund University image bank; enter the name required in the search field. Company photographs from Spectracure are also available; enter “Spectracure” in the search field.

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se

Further reports about: Atomic Physic cancer patients laser light laser system optical fibre prostate cancer

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>