Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method makes it easier to treat prostate and pancreatic cancer

15.02.2012
Laser light in combination with certain drugs – known as photodynamic therapy – can destroy cancer tumours, but is today used mostly to cure skin cancer.

The reason that internal tumours are not treated with the method is that the technology does not exist to check that the precise amount of light is administered. However, software developed by researchers in atomic physics at Lund University in Sweden looks like being able to solve the problem.

“I think we are about to see a real breakthrough, both for us and for other research groups around the world who conduct research on cancer treatment using laser light”, says Johannes Swartling, Doctor of Atomic Physics at Lund University and Chief Technical Officer at SpectraCure, the company that is now developing the software.

The software’s unique feature is that it uses the optical fibres for more than simply emitting light. Intermittently they also gather information about the tumour, which they send back to the laser instrument.

“In this way, the software can continually calculate the optimal light dose and adjust it if necessary. The entire tumour must be removed, while damage to adjacent organs must be avoided”, says Johannes Swartling.

According to the researchers, the software could also be used with other light therapies that use LEDs or infra-red lasers.

Tests on prostate cancer patients in Sweden have shown that the method also works for internal tumours, and in the spring a clinical study on recurrent prostate cancer will begin in the US and Canada. An application for approval to carry out the study is pending. Meanwhile, the same laser light technology is being tested in the UK on pancreatic cancer.

“The advantage of laser light is that it appears that side effects can be minimised. With current treatment methods, prostate cancer patients who are cured risk both impotence and incontinence.”

In addition, traditional treatments entail a risk of cancer recurrence, says Johannes Swartling.

The international tests focus on adjusting dosage, guaranteeing safety and ensuring the effectiveness of treatment. If everything goes smoothly, SpectraCure hopes the method will be approved by the US Food and Drug Administration and Health Canada within a few years.

“This really could be revolutionary”, says Sune Svanberg, Professor of Laser Physics at Lund University and one of the researchers behind the technology.

“The new technology has great potential to help certain patient groups, for whom current treatment methods have major limitations”, says Professor Dr Katarina Svanberg, Department of Oncology, Lund University, who has been involved in the medical side of the development of the method.

How photodynamic therapy works
Before the procedure, the patient is given a light-activated drug, which has no effect without light. The drug spreads throughout the body, including to the area of the tumour. The patient then receives a local or general anaesthetic and the doctor inserts needles with optical fibres into the area affected. These channel light into the cancer tumour. When the light comes into contact with the light-activated drug, it reacts with the surrounding oxygen, causing the cells in the target area to die.

The hardware and software are based on patents developed by atomic physicists in Lund, led by Sune Svanberg and Stefan Andersson-Engels. The idea was to allow the same optical fibres used for treatment to be used for diagnostic measurements that make it possible to calculate the light dose required. The method was soon seen to be practicable and has been developed over the years, now by SpectraCure. The implementation has been carried out by programmers.

For more information, please contact: Stefan Andersson-Engels, Professor of Atomic Physics, +46 46 222 3121, Stefan.Andersson-Engels@fysik.lth.se , Johannes Swartling, +46 708 233680, jsw@spectracure.com or Jens Nilsen, CEO SpectraCure, +46 706 878712, jn@spectracure.com.

High resolution photographs of Stefan Andersson-Engels, Johannes Swartling and Sune Svanberg can be found in the Lund University image bank; enter the name required in the search field. Company photographs from Spectracure are also available; enter “Spectracure” in the search field.

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se

Further reports about: Atomic Physic cancer patients laser light laser system optical fibre prostate cancer

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>