Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of HIV spread has potential for future drug therapy

24.04.2012
A new understanding of the initial interactions of human immunodeficiency virus type 1 (HIV-1) and dendritic cells is described by Boston University School of Medicine (BUSM) researchers in a study currently featured in the Proceedings of the National Academy of Sciences (PNAS).
With over 2.5 million new HIV infections diagnosed annually and earlier detection becoming more common, better understanding of early virus-host interactions could have a great impact on future research and drug therapy.

In this study, the researchers describe a novel mechanism of HIV-1 spread by dendritic cells. These cells, which are present at the body's mucosal surfaces, are the focus of research because they are among the first cells to encounter HIV-1 and trigger the immune system. While previous work has focused on the HIV-1 envelope glycoprotein method of interactions, this research details the role of a molecule called GM3, which arises from the host itself and is used by the virus for attachment and spread.

Since this virus invasion method depends on the molecules originating from the host, "it is a stealth entry mechanism, likely not detected by the cell, so HIV can spread quickly," says Dr. Rahm Gummuluru, associate professor in the department of microbiology at BUSM and senior author of the study.

Despite the cleverness of the virus, this unique contact between HIV-1 and dendritic cells may offer a new direction for anti-viral therapies. "Resistance to therapy, which often challenges physicians, is unlikely to occur in drugs that target this interaction, as these drugs would have the benefit of acting on the host, instead of the virus," Gummuluru. Further research in this field may identify specific targets and offer hope for preventing HIV infections.

The research was led by Dr. Wendy Blay Puryear, post-doctoral fellow in the department of microbiology at BUSM, in collaboration with Dr. Björn Reinhard, assistant professor of chemistry and the photonics center at Boston University.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: BUSM HIV HIV infection HIV-1 dendritic cells mechanism microbiology photonics center

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>