Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Cost, Nano Test Strips for Drinking Water Tests

03.07.2013
Invention holds promise for improving health of millions around the world

Today the National Academy of Sciences announced a three-year, $271,930 grant to chemist Vincent Rotello at the University of Massachusetts Amherst to develop, test and deploy new, sensitive, reliable and affordable inkjet-printed, nanoparticle-based test strips for detecting disease-causing bacteria in drinking water, with researchers at the Lahore University of Management Sciences (LUMS), Pakistan.

Rotello, with nanoparticle researcher Irshad Hussain and molecular biologist Sohail Qureshi of the LUMS School of Science & Engineering, will address drinking water safety in Lahore, the largest city in the nation’s Punjab region, where it is estimated that more than 60 percent of water sources in the city are contaminated with disease-causing bacteria and rates even higher in rural areas. Hussain’s group will receive separate and additional funding from the Higher Education Commission of Pakistan.

Set to start on July 15, the UMass Amherst project was one of only 10 chosen from among 268 nationwide, with NAS managers noting it “was among the strongest in the excellent group of proposals we received.”

Rotello says, “This is a very nice mix of research and practical outreach in the real world with a goal to improving world health. We hope to produce a test strip that can be made on a small, local scale and also in a large-scale manufacturing setting.” The World Health Organization estimates that 1.2 billion people worldwide are without access to safe drinking water, resulting in over 300 million illnesses and the death of an estimated 2 million children per year.

Up to now, tests for detecting pathogenic bacteria in water have required expensive equipment and the assays are not sensitive enough to assure drinking water safety. A test strip that would change color in the presence of pathogenic bacteria could give a quick answer, but until now no one had developed a reliably sensitive test.

Experts in manipulating nanoparticles for biosensing, Rotello and colleagues had already developed a bacterial sensor based on enzymes tethered to gold nanoparticles that remain electrostatically linked in the absence of bacteria but release when it is present, turning the water or solution red. Though this process is very sensitive, allowing detection of as few as 100 bacteria per milliliter, the chemist notes, the enzymes were not stable at temperatures found in field use.

For their new, lower-cost and more robust (less temperature-sensitive) version, they propose to use other nanoparticles that would be printed using inexpensive (less than $100) inkjet machines onto test strips using a process able to isolate catalysts. Optimized through particle coating design, these could monitor bacteria in water and give a visual signal to the user that bacteria were detected.

Inkjet printers are excellent tools for creating test strips, Rotello points out, because they are low cost and offer the ability to pattern materials in channels at the micron scale. “We will print some elements in one channel and some in another. As a result, these strips will be stable until they’re dipped in water, at which point reaction is initiated and readout is possible.”

Another channel will be used to minimize pH and ionic perturbations, leaving additional channels available for future modifications. Some issues of stability and component cost remain to be addressed, he adds.

This technology will be shared with Hussain and colleagues by international graduate student exchange. Meanwhile, Rotello and colleagues plan to work out how to scale test-strip manufacture up from the smaller-scale inkjet technology to larger-scale, roll-to-roll nanomanufacturing available at UMass Amherst, one of very few centers in the United States that currently offer such technology.

Rotello says, “Inkjet printing provides a strategy to rapidly develop processes that can readily be translated to roll-to-roll manufacturing. Given the two-way nature of this collaboration, any new intellectual property that comes from this work will be shared equally between LUMS and University of Massachusetts, allowing both institutions to reap the rewards of their respective efforts.”

Both the Massachusetts and Lahore groups will collaborate on validating the test strips in real world conditions with water samples from the Lahore area. Results from these studies will be used to optimize strip performance and determine their shelf life and stability.

Vincent Rotello | Newswise
Further information:
http://www.umass.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>