Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Cost ‘Cooling Cure’ Could Avert Brain Damage in Oxygen-Starved Babies

22.03.2013
When babies are deprived of oxygen before birth, brain damage and disorders such as cerebral palsy can occur.
Extended cooling can prevent brain injuries, but this treatment is not always available in developing nations where advanced medical care is scarce. To address this need, Johns Hopkins undergraduates have devised a low-tech $40 unit to provide protective cooling in the absence of modern hospital equipment that can cost $12,000.

The device, called the Cooling Cure, aims to lower a newborn’s temperature by about 6 degrees F for three days, a treatment that has been shown to protect the child from brain damage if administered shortly after a loss of oxygen has occurred. Common causes of this deficiency are knotting of the umbilical cord or a problem with the mother’s placenta during a difficult birth. In developing regions, untrained delivery, anemia and malnutrition during pregnancy can also contribute to oxygen deprivation.
Johns Hopkins students designed this low-cost prototype to cool and prevent brain damage in oxygen-deprived babies in developing regions where advanced medical care is unavailable. Photo: Will Kirk/Johns Hopkins University

In a recent issue of the journal Medical Devices: Evidence and Research, the biomedical engineering student inventors and their medical advisors reported successful animal testing of the Cooling Cure prototype. The device is made of a clay pot, a plastic-lined burlap basket, sand, instant ice-pack powder, temperature sensors, a microprocessor and two AAA batteries. To activate it, just add water.

The device could help curtail a serious health problem called hypoxic ischemic encephalopathy, which is triggered by oxygen deficiency in the brain. Globally, more than half of the newborns with a severe form of this condition die, and many of the survivors are diagnosed with cerebral palsy or other brain disorders. The problem is particularly acute in impoverished regions where pregnant women do not have easy access to medical specialists or high-tech hospital equipment. The inventors say Cooling Cure could address this issue.

“The students came up with a neat device that’s easy for non-medical people to use. It’s inexpensive and user-friendly,” said Michael V. Johnston, a Johns Hopkins School of Medicine pediatric neurology professor who advised the undergraduate team. Johnston also is chief medical officer and executive vice president of the Kennedy Krieger Institute, an internationally recognized center in Baltimore that helps children and adolescents with disorders of the brain, spinal cord and musculoskeletal systems.

For the past 25 years, Johnston has been studying ways to protect a newborn’s brain, including the use of costly hospital cooling units that keep brain cells from dying after an oxygen deficiency. Several years ago, while visiting Egypt, he learned that local doctors were using window fans or chilled water bottles in an inadequate effort to treat oxygen-deprived babies. When he returned to Baltimore, Johnston and Ryan Lee, a pediatric neurologist and postdoctoral fellow at Kennedy Krieger, discussed the problem with Robert Allen, a Johns Hopkins associate research professor in a biomedical engineering program that requires undergraduates to design and build devices to solve pressing medical problems. Allen suggested that Johnston and Lee present the baby-cooling dilemma to biomedical engineering students in the school’s Center for Bioengineering Innovation and Design.

Johns Hopkins undergraduates, from left, John J. Kim, Simon Ammanuel and Nathan Buchbinder were part of a biomedical engineering team that invented the baby-cooling device. Photo: Will Kirk/Johns Hopkins University

The challenge was accepted in 2011 by a team of Whiting School of Engineering undergraduates. With an eye toward simplicity and low-cost, the students designed a cooler made of a clay pot and a plastic-lined basket, separated by a layer of sand and urea-based powder. This powder is the type used in instant cold-packs that help reduce swelling. To activate the baby-cooling unit, water is added to the mixture of sand and powder, causing a chemical reaction that draws heat away from the upper basket, which cradles the child. (The chemical would not come into direct contact with the newborn.)

The unit’s batteries power a microprocessor and sensors that track the child’s internal and skin temperatures. Small lights flash red if the baby’s temperature is too hot, green if the temperature is correct and blue if the child is too cold. By viewing the lights, the baby’s nurse or a family member could add water to the sand to increase cooling. If the child is too cool, the caregiver could lift the child away from the chilling surface until the proper temperature is restored.

Last May, at a student invention showcase organized by the university’s Department of Biomedical Engineering, the Cooling Cure team presented its prototype, designed for a full-term newborn weighing up to nine pounds and measuring up to 18 inches in length. The team won the Linda Trinh Memorial Award, which recognized Cooling Cure as an innovative idea for a global health project. In August two of the student inventors were chosen to visit medical centers in India for a two-week trip sponsored by a group called Medical and Educational Perspectives. The group has also offered modest financial support to advance the Cooling Cure design project.

In recent months, three of the Cooling Cure’s student inventors—John J. Kim, Nathan Buchbinder and Simon Ammanual—have opted to move the project forward through animal testing and improvement of the prototype. “We’ve tried to continue this because we’ve gotten such good feedback from people,” said Kim of Santa Barbara, Calif., a leader of the student team who completed his undergraduate studies in December. “This is a nonprofit project. The main thing we want to do is to make sure that people in developing countries can benefit from this device.”

Fellow team member Buchbinder, a sophomore from Marlboro, N.J., added, “It’s not every day that you get to work on a medical device that could save lives and prevent disabilities in kids.”

Working with the Johns Hopkins Technology Transfer staff, the students and their faculty advisors have obtained a provisional patent covering the low-cost baby-cooling unit. In the near future, the student inventors hope to link up with an international medical aid group and begin human clinical trials in a developing region.

John Kim was lead author of the Medical Devices: Evidence and Research study. The co-authors—all Johns Hopkins student inventors and faculty advisors—were Buchbinder, Ammanual, Robert Kim, Erika Moore, Neil O’Donnell, Jennifer K. Lee, Ewa Kulikowicz, Soumyadipta Acharya, Robert H. Allen, Ryan W. Lee and Michael V. Johnston. The article can be viewed at http://www.dovepress.com/articles.php?article_id=11849.

Related links:

Johns Hopkins Center for Bioengineering Innovation and Design: http://cbid.bme.jhu.edu/

Department of Biomedical Engineering: http://www.bme.jhu.edu/

Whiting School of Engineering: http://engineering.jhu.edu

Johns Hopkins Technology Transfer: http://techtransfer.jhu.edu/

Kennedy Krieger Institute: http://www.kennedykrieger.org

Medical and Educational Perspectives: http://www.mepjhu.com/mep/mep.html

Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/. Information on automatic E-mail delivery of science and medical news releases is available at the same address.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>